• Title/Summary/Keyword: channel-adaptive

Search Result 1,130, Processing Time 0.024 seconds

An Adaptive Rate Allocation to Source-Channel Coding for Internet Video

  • Kwon, Jae-Cheol;Kim, Jae-Kyoon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1915-1919
    • /
    • 2003
  • A practical method of adaptive rate allocation to source and channel codings for an independent loss channel is proposed for Internet video. It is based on the observations that the values of residual loss probabilities at the optimal code rates for different packet loss probabilities are closely clustered to the average residual loss probability for a transmission frame size n in RS(n,k) code and for a total bit rate R. These observations aye then exploited to find the code rate for maximum PSNR. Simulation results demonstrate that the proposed method achieves a near-optimal bit-rate allocation in the joint source-channel coding of H.263 and RS(n,k) codings.

  • PDF

Estimation of Channel States for Adaptive Code Rate Change in DS-SSMA Communication Systems: Part 1. Estimation of Effective Number of Users

  • Youngkwon Ryu;Iickho Song;Taejoo Chang;Kim, Suk-Chan
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 1996
  • Adaptive code rate change schemes in DS-SSMA systems are proposed. In the proposed schemes, the error correcting code rate is changed according to the channel states. Two channel states having significant effects on the bit error probability are considered: one is the effective number of users, and the other is the fading environment. These channel states are estimated based on retransmission requests. The criterion for the change of the code rate is to maximize the throughput under given error bound.

  • PDF

An Adaptive Transmission Scheme Based on Interference Temperature Cognition for Cognitive Radio Systems (Cognitive Radio 시스템을 위한 간섭온도 인지 기반의 적응전송 기법)

  • Hong, Min-Ki;Kim, Jae-Woon;Kim, Hyun-Wook;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.826-833
    • /
    • 2007
  • In this paper, we present an adaptive transmission system model to establish the baseline for wireless adaptive transmission using CR (Cognitive Radio) systems, and propose an adaptive transmission scheme based on IT (Interference Temperature) cognition for CR systems in the presented system environment. The proposed CR adaptive transmission scheme is the method that provides the CR user with the maximum transmit power in the range of not causing any interference to the incumbent user and guaranteeing the optimal throughput by applying CR-AMC (CR-Adaptive Modulation and Coding) in the given channel state. Simulation results show that in case of using the proposed CR adaptive transmission scheme, there is little degradation of BER performance, while causing no interference to the incumbent user. At the same time, the proposed scheme guarantees the optimal throughput to the CR user in the given channel state.

Improved Downlink Performance of Transmit Adaptive Array applying Transmit Antenna Selection (적응형 송신 빔 성형 시스템의 순방향 링크 성능 향상을 위한 송신 안테나 선택 방식의 적용)

  • Ahn, Cheol-Yong;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.111-118
    • /
    • 2003
  • The transmit adaptive array requires the forward link channel information for evaluating the optimum transmit weight vector in which a feedback channel provides transmitter with the forward link channel information. The larger transmit adaptive array is, the higher required rate of feedback channel is. Therefore we consider the system that the N-transmit antenna system is expanded to the 2N-transmit antenna system, while the feedback channel is maintained as that of N-transmit antenna system. The increase of the number of antennas can produce the additional diversity gain, however the insufficient feedback bits assigned to each antenna aggravates the quantization error. In this paper, we propose the transmit antenna selection in order to improve the performance of transmit adaptive array having an insufficient feedback channel information. The effective method to transmit the weight vector is also introduced. System performances are investigated for the case of N=4 corresponding to the antenna selection diversity schemes on the flat fading channel and the multipath fading channel. The simulation results show that the proposed scheme can improve the system performance by 1 dB when the N is expanded to the 2N, while the feedback channel is restricted to that of N-transmit antenna system.

A Novel Two-step Channel Prediction Technique for Adaptive Transmission in OFDM/FDD System (OFDM/FDD 시스템에서 Target QoS 만족을 위한 다단계 적응전송 채널예측기법)

  • Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.745-751
    • /
    • 2006
  • The transmitter requires knowledge of the channel status information in order to adopt the adaptive modulation and coding scheme(AMC) for OFDM system. But in the outdoor environment which the users have high mobility, the channel status information from the users is outdated, so that it induces the degradation of system throughput and packet error rate(PER) performance. To solve this problem, researches about applying channel prediction technique to the AMC scheme have been proceeded. Most channel prediction techniques assume that there is no channel variation in the predefined time duration, e.g., a slot. As a result, those techniques cannot compensate the degradation of PER performance resulting from the rapid variation of channel during the slot duration. This paper introduces a novel channel prediction technique for OFDM/FDD system to support adaptive modulation and coding scheme over rapidly time-varying multipath fading channel. The proposed channel prediction technique considers the time-varying nature of channel during the slot duration. Simulation results show that the AMC scheme of OFDM/FDD system utilizing the proposed channel prediction technique can guarantee the target PER of 1% without any loss of system throughput compared with the case supported by the conventional channel prediction under ITU-R Veh A 30km/h.

Performance analysis of adaptive turbo coded modulation over mobile communication channel (이동통신 채널에서 적응터보부호화 변조방식의 성능분석)

  • Kim, Yeon-Su;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.69-78
    • /
    • 2006
  • High spectral efficiency can be obtained by adaptive modulation in which the modulation scheme is changed according to the channel environment. Thus it is especially suitable to mobile channel which is a typical example of time-varying channel. It is required to determine the optimum thresholds of signal-to-noise ratio(SNR) to change the modulation scheme effectively according to mobile speeds. Thus the optimum thresholds for specific mobile speeds to get the required bit error rate(BER) of $10^{-6}$ are obtained with the powerful turbo code in this paper. In addition, the optimum thresholds for the continuous mobile speed are proposed by interpolation of the obtained results. And the error performance and average spectral efficiency are investigated at various mobile speeds and channel environments.

Analysis of Mobile System using Adaptive Modulation Method by Channel Forecast (채널예측에 의한 적응변조방식을 이용한 모바일 시스템 분석)

  • Lee, Myung-Soo;Cho, Dae-Jea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.895-900
    • /
    • 2011
  • To improve drawback of existing modulation method, in this paper, we propose the channel forecast method using adaptive modulation which can improve throughput of channel. This method adaptively changes modulation method to the change of channel environments. In proposed method, channel's characteristics are measured in realtime to determine code rate to the changes of demanded channel's bit error rate. If bit error rate is increased, this method reduce code rate to maintain maximum throughput. We analysis performance of proposed method by Matlab.

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

Adaptive Channel Attenuation Compensation Scheme for Minimum PAR in Satellite OFDMA Downlink (위성 OFDMA Downlink에서 PAR을 최소화 하기 위한 사용자 부채널 할당 및 채널 보상 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Ahn, Do-Seob;Kang, Kun-Seok;Kim, Hee-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • We investigate the adaptive channel attenuation compensation of satellite OFDMA downlink users for minimum PAR (Peak to Average power Ratio), which is one of the main challenging issues in satellite OFDMA application. First, we analyze and compare PAR performances of two main different channel attenuation compensation schemes for OFDMA, i.e., PC-OFDMA (power control OFDMA) and AMC-OFDMA (Adaptive Modulation and Coding). While AMC-OFDMA maintains the constant transmission powers through entire user data subcarriers, PC-OFDMA has non-uniform subcarrier transmission powers because subcarrier powers are separately controlled to compensate each user's sub-channel attenuation. We newly found the fact that non-uniform subcarrier power in PC-OFDMA achieves rather reduced PAR compared to AMC-OFDMA and the amount of reduction becomes larger as the power differences among subcarriers increase. Also, there is an additional PAR reduction in PC-OFDMA by optimizing subcarrier grouping scheme for user's sub-channelization.

  • PDF

Feedback Error Quantification in Adaptive Modulation over Fading Channels

  • Choi, Se-Yeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • In this work, we consider imperfectness of feedback channels in the adaptive transmission scheme which was previously studied with an assumption of error-free feedback channels. New method of mapping the modulation index into the feedback channel symbols and quantifying feedback error over fading channels are proposed. The presented method and results are expected to offer valuable tools for the system designer to efficiently implement adaptive diversity schemes to compensate for the performance degradation due to feedback error.