• 제목/요약/키워드: channel state information

검색결과 742건 처리시간 0.024초

The Trap Characteristics of SILC in Silicon Oxide for SoC

  • Kang C. S.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.209-212
    • /
    • 2004
  • In this paper, The stress induced leakage currents of thin silicon oxides is investigated in the nano scale structure implementation for Soc. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The channel current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between $41\square\;and\;113.4\square,$ which have the channel width x length 10x1um, respectively. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhitory state.

  • PDF

OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법 (An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System)

  • 김세진;원정재;이형우;조충호
    • 한국통신학회논문지
    • /
    • 제31권5A호
    • /
    • pp.451-458
    • /
    • 2006
  • 본 논문에서는 Orthogonal Frequency Division Multiple Access/Time Division Duplex 시스템에서 한정된 하향링크 무선 자원을 효율적으로 이용하고, 시스템 성능을 높이는 스케줄링 기법을 제안하였다. 시계열 예측 알고리즘을 이용하여 향후 변화될 기지국과 단말들 사이의 채널상태를 예측하고, 이 예측된 정보를 무선 자원 할당의 우선순위를 결정하는데 이용하였다. 시뮬레이션을 통해 제안하는 알고리즘의 성능을 분석하였고, 시스템 처리율과 지연시간에서 Proportional Fairness, 그리고 Maximum Carrier to Interference Ratio 알고리즘과 비교 평가하였다.

An Efficient Markov Chain Based Channel Model for 6G Enabled Massive Internet of Things

  • Yang, Wei;Jing, Xiaojun;Huang, Hai;Zhu, Chunsheng;Jiang, Qiaojie;Xie, Dongliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4203-4223
    • /
    • 2021
  • Accelerated by the Internet of Things (IoT), the need for further technical innovations and developments within wireless communications beyond the fifth generation (B5G) networks is up-and-coming in the past few years. High altitude platform station (HAPS) communication is expected to achieve such high levels that, with high data transfer rates and low latency, millions of devices and applications can work seamlessly. The HAPS has emerged as an indispensable component of next-generations of wireless networks, which will therefore play an important role in promoting massive IoT interconnectivity with 6G. The performance of communication and key technology mainly depend on the characteristic of channel, thus we propose an efficient Markov chain based channel model, then analyze the HAPS communication system's uplink capability and swing effect through experiments. According to the simulation results, the efficacy of the proposed scheme is proven to meet the requirements of ubiquitous connectivity in future IoT enabled by 6G.

하향 링크 레일리 감쇄 채널에서의 채널 상태 정보 궤환 지연을 고려한 효율적인 적응 전송 기법 (An Efficient Adaptive Modulation and Coding Scheme on Downlink Rayleigh Fading Channels Considering Channel-State-Information Feedback Delay)

  • 이두호;황해광;상영진;김광순
    • 한국통신학회논문지
    • /
    • 제31권11C호
    • /
    • pp.1100-1106
    • /
    • 2006
  • 하향 링크 이동통신 시스템에서, 채널 추정 시점과 실제 전송 시점 사이의 시간 지연으로 인해 채널 상태 정보의 정확도가 떨어지게 되고 이는 성능 열화로 이어진다. 이를 극복하고 전송률을 극대화하기 위해 채널 예측이 필수적이다. 본 논문에서는 채널 예측을 통한 적응 전송 기법을 제안하고 성능을 분석한다. 모의 실험을 통해 제안한 기법이 궤환 지연으로 인한 성능 열화를 극복하는데 효율적임을 보였다.

Interference Tolerant Based CR System with Imperfect Channel State Information at the CR-Transmitter

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권2호
    • /
    • pp.128-132
    • /
    • 2011
  • In interference tolerance based spectrum sharing systems, primary receivers (PRs) are protected by a predefined peak or average interference power constraint. To implement such systems, cognitive radio (CR) transmitters are required to adjust their transmit power so that the interference power received at the PR receivers is kept below the threshold value. Hence, a CR-transmitter requires knowledge of its channel and the primary receiver in order to allocate the transmit power. In practice, it is impossible or very difficult for a CR transmitter to have perfect knowledge of this channel state information (CSI). In this paper, we investigate the impact of imperfect knowledge of this CSI on the performances of both a primary and cognitive radio network. For fixed transmit power, average interference power (AIP) constraint can be maintained through knowledge of the channel distribution information. To maintain the peak interference power (PIP) constraint, on the other hand, the CR-transmitter requires the instantaneous CSI of its channel with the primary receiver. First, we show that, compared to the PIP constraint with perfect CSI, the AIP constraint is advantageous for primary users but not for CR users. Then, we consider a PIP constraint with imperfect CSI at the CR-transmitter. We show that inaccuracy in CSI reduces the interference at the PR-receivers that is caused by the CR-transmitter. Consequently the proposed schemes improve the capacity of the primary links. Contrarily, the capacities of the CR links significantly degrade due to the inaccuracy in CSI.

Optimal Packet Scheduling for Energy Harvesting Sources on Time Varying Wireless Channels

  • Kashef, Mohamed;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • 제14권2호
    • /
    • pp.121-129
    • /
    • 2012
  • In this paper, we consider a source node that operates over a time varying channel with energy harvesting capability. The goal of the source is to maximize the average number of successfully delivered packets per time slot. The source is able to choose whether to transmit a packet or defer the transmission in each time slot. The decision which is chosen by the source depends on the channel information available and the length of the energy queue. We formulate the problem of finding the optimal policy as a Markovian decision problem. We show some properties of the value function that represents the discounted number of successfully delivered packets per time slot. We prove that the optimal policy is a threshold type policy depending on the state of the channel and the length of the energy queue. We also derive an upper bound for the average number of packets per time slots successfully received by the destination. We show using numerical results that this bound is a tight bound on the performance of the optimal policy. And we consider the case of time varying channel but without channel state information (CSI). Then, we study the impact of channel time varying nature and the availability of CSI. In this case, we show that the optimal policy is a greedy policy. The performance of this greedy policy is also calculated.

Unsaturated Throughput Analysis of IEEE 802.11 DCF under Imperfect Channel Sensing

  • Shin, Soo-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.989-1005
    • /
    • 2012
  • In this paper, throughput of IEEE 802.11 carrier-sense multiple access (CSMA) with collision-avoidance (CA) protocols in non-saturated traffic conditions is presented taking into account the impact of imperfect channel sensing. The imperfect channel sensing includes both missed-detection and false alarm and their impact on the utilization of IEEE 802.11 analyzed and expressed as a closed form. To include the imperfect channel sensing at the physical layer, we modified the state transition probabilities of well-known two state Markov process model. Simulation results closely match the theoretical expressions confirming the effectiveness of the proposed model. Based on both theoretical and simulated results, the choice of the best probability detection while maintaining probability of false alarm is less than 0.5 is a key factor for maximizing utilization of IEEE 802.11.

Codebook based Direct Vector Quantization of MIMO Channel Matrix with Channel Normalization

  • Hui, Bing;Chang, KyungHi
    • 한국통신학회논문지
    • /
    • 제39A권3호
    • /
    • pp.155-157
    • /
    • 2014
  • In this paper, a novel codebook generation strategy is proposed. With the given codebooks, two codeword selection procedures are proposed and analyzed for generating the quantized multiple-input multiple-output (MIMO) channel state information (CSI). Furthermore, three different quantization and normalization strategies are analyzed. The simulation results suggest that the proposed 'quantized channel generation method 2' is the best strategy to reduce the quantization and normalization errors to generate the final quantized MIMO CSI.

네트워크 제어 시스템을 위한 최적화된 매체 접근 확률 (Optimized Medium Access Probability for Networked Control Systems)

  • 박판근
    • 한국정보통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2457-2464
    • /
    • 2015
  • 무선 네트워크를 통한 네트워크 제어 시스템 (NCS: Networked Control Systems)은 다양한 제어 시스템의 효율성을 극대화 할 수 있는 잠재력을 가지고 있다. 본 연구에서는 네트워크 제어 시스템으로부터 이끌어낸 상태갱신주기(SUI: State Update Interval)라는 성능 메트릭을 정의한다. 제시된 상태갱신주기는 제어와 통신 시스템 계층 사이의 핵심적인 상호작용을 포함하고 있다. 제시된 성능 메트릭은 NCS를 위한 최적화 문제를 도출하는데 사용이 되었으며, 이러한 최적화 문제의 목적 함수는 상태갱신주기의 제한 요소를 만족하는 확률이며 변수는 매체접근 확률로 표현되었다. 본 연구에서는 제시된 최적화 문제의 최적 매체접근 확률이 유일한 해를 가진다는 것을 증명하였다. 또한 NCS를 위한 최적의 매체접근 확률은 전송률을 극대화하는 기존의 매체접근 확률보다 낮다는 결론을 도출하였다. 성능 분석 결과를 통하여 시스템의 안정도가 상태갱신주기를 고려한 최적의 매체접근 확률을 사용하였을 때가 전송률을 최대화하는 매체접근 확률을 사용 했을 때 보다 높다는 점을 보였다.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권6호
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.