• Title/Summary/Keyword: channel scanning

Search Result 134, Processing Time 0.031 seconds

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

Energy Efficient Channel Sensing Scheduling in Cognitive Radio Networks (인지 무선 네트워크에서의 에너지 효율적인 센싱 스케쥴링 방법)

  • Choi, Woo-Jeong;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Recently, cognitive radio technology has been spotlighted for the efficient use of limited frequency technology. The most important part of CR is to protect the incumbent user's communications. Therefore, CR user should be sensing the currently using channel and another hopping channel for sudden appearance of the Incumbent User. In this paper, we propose the cooperative channel sensing to protect the IU considering each CR user's remained power and sensing-zone, sense the spectrum bands in a fairly distributed manner and share the results among the users within respective sensing zone. Sensing scheme including inband sensing and outband sensing is utilized. The inband sensing is in charge of current using channel scanning while the outband sensing mainly cares about other channels. The performance results by computer simulations show that our sensing scheduling scheme reduces the number of sensing nodes and saves energy need to channel sensing.

Characteristics of dose distribution for virtual wedge (가변형 쐐기필터의 선량분포에 관한 특성)

  • 김부길;김진기
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • We was investigate the dosimetric characteristics of the virtual wedge and it compared to the conventional fixed wedge. Also we was evaluate the quality factor of the experimental multi-channel dosimetry system for virtual wedge. Recently virtual wedge technique and wedge fraction methods are available through the computer controlled asymmetric collimator or the independent jaw in medical linear accelerator for radiation therapy. The dosimetric characteristics are interpreted by radiation field analyzer RFA-7 system and PTW-UNIDOS system. Experimental multi-channel dosimetry system for virtual wedge was consists of the electrometer, the solid detector and array phantom. The solid detectors were constructed using commercially diodes for the assessment of quality assurance in radiotherapy. And it was used for the point dose measuring and field size scanning. The semiconductor detector and ion chamber were positioned at a dmax, 5 cm, 10 cm, 20 cm depth and its specific ratio was determined using a scanning data. Wedge angles in fixed and virtual type are compared with measurements in water phantom and it is shown that the wedge angle 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$were agree within 1$^{\circ}$ degree in 6, 10 MV photon beams. In PDD and beam flatness, experimental multi-channel disimetry system was capable of reproduceing the measured values usually to within $\pm$2.1% the statistical uncertainties of the data. It was used to describe dosimetric characteristics of virtual wedge in clinical photon beams. Also we was evaluate optimal use of the virtual wedge and improve the quality factor of the experimental multi-channel dosimetry system for virtual wedge.

  • PDF

Optical system design of a mobile LIDAR for air polution research (대기오염 연구용 이동형 LIDAR 광학계 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.191-195
    • /
    • 1996
  • A optical system of a movile LIDAR is designed for air pollution research. After the inverse Cassegrain type collimator, the laser beam falls on the mirror which serve for coinciding optical axis of laser beam and the receiving telescope. Then, it is directed into the atmosphere and back scattered radiation back to the receiving telescope by the scanning mirror. The unit of scanning mirror allows to rotate the mirror along the altitude 0$^{\circ}$~60$^{\circ}$, and the azimuth 0$^{\circ}$~360$^{\circ}$. The scanning mirror is not connected with the receiving telescope but placed on the roof of the mobile. The received beam is spatial filtered by a spatial filter and collimated by a fabric lens. Thereafter, the beam is devided into 2 channel for registration by a beam splitter. Each laser beam is transformed into an electrical signal by means of the photomultifier and then processed to be analyzed.

  • PDF

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Developement of Data Process Techniques of Land Information System Using Satellite Image (인공위성 영상을 이용한 토지정보시스템의 자료처리 기법 개발)

  • 강인준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.115-118
    • /
    • 1991
  • Land information system is a data base describing physical or legal characteristics of land areas, sometimes called a land records system. The digital remote sensor data is useful to calculate some fundamental statistics of the spectral data. This normally involves computing the minimum and maximum value for each band imagery, the mean, the standard deviation, a variance-covariance matrix, and frequencies of brightness values in each channel which are used to produce histograms. In this paper, author emphasize scanning for aerial photos, and next paper will be scanning for satellite image.

  • PDF

Linear interrogation of fiber Bragg grating sensor array using a Etalon filter (에탈론 필터를 이용한 광섬유격자 센서의 선형 복조)

  • Jin, Zhong-Xie;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-77
    • /
    • 2006
  • A scanned Fabry-Perot(F-P) filter and a Multi-Channel Wavelength Locker(MCWL) were used to interrogate fiber Bragg grating sensor array. When the F-P filter scans over the MCWL which works as a multi-reference the temporal peaks profiles correspond to the locking wavelengths. To solve the linearity, stability, and accuracy problems caused by the nonlinear response of F-P filter, a polynomial fitting algerian was used to calculate the relationship between the peak locations and the wavelengths in all the scanning range. Then from the reflected peaks locations and the best fitting line, the Bragg wavelengths can be obtained. The measurement linearity was greatly enhanced with wavelength resolution of about 4 pm in 10Hz scanning frequency.

  • PDF

Far-ultraviolet Observations of the Comet C/2001 Q4 (NEAT)

  • Lim, Yeo-Myeong;Min, Kyoung-Wook;Seon, K.I.;Han, W.;Edelstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Box}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4'.6$, L: $7^{\circ}.5{\times}4'.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A1{\cap}-X1{\sum}+$ system in the L channel. We estimated QCO = ($2.58\;{\pm}\;0.64)\;{\times}\;1028$ s-1 from the production rate of CO 1510 ${\AA}$. We obtained L-channel image which have map size of $5^{\circ}{\times}5^{\circ}$. The image was constructed for the wavelength band of L-channel (1350-1750 ${\AA}$).We also obtained radial profile of S I, C I, CO with line fitting from central coma.

  • PDF

FUV observation of the comet C/2001 Q4 (NEAT) with FIMS

  • Lim, Yeo-Myeong;Min, Kyoung Wook;Feldman, Paul D.;Han, Wonyong;Edelstein, Jerry
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.107.1-107.1
    • /
    • 2012
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Delta}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4^{\prime}.6$, L: $7^{\circ}.5{\times}4^{\prime}.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A^1{\Pi}-X^1{\Sigma}^+$ system in the L channel. Production rates of the notable molecules, such as C I, S I and CO, were estimated from the photon fluxes of these spectral lines and compared with previous observations. We compare the flux and the production rates in the radius of $3{\times}10^5$ km with $20{\times}10^5$ km from the central coma. We obtained L-channel image which have map size $5^{\circ}{\times}5^{\circ}$ The image was constructed for the wavelength band of L-channel (1350 - 1710 ${\AA}$. We also present the radial profiles of S I, C I, CO obtained from the spectral images of the central coma. The radial profiles of $2{\times}10^6$ km region are compared with the Haser model.

  • PDF

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF