• Title/Summary/Keyword: channel rendezvous

Search Result 14, Processing Time 0.023 seconds

Rendezvous Issues in AD Hoc Cognitive Radio Networks

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3655-3673
    • /
    • 2014
  • Rendezvous is a process of two or more cognitive radio nodes gathering on the same channel at the same time for a negotiation to establish data communications. This paper discusses rendezvous issues in cognitive radio networks. It details why rendezvous is an issue in cognitive radio networks and how rendezvous works. It classifies channel access methods, and details sequence-based channel-hopping methods. It surveys existing works on blind rendezvous and compares the proposed algorithms in terms of the maximum time to rendezvous. This paper discusses the properties that an efficient channel-hopping rendezvous algorithm should have and illustrates common issues in the existing rendezvous methods. It also explains open research issues in the rendezvous area.

The Life Cycle of the Rendezvous Problem of Cognitive Radio Ad Hoc Networks: A Survey

  • Htike, Zaw;Hong, Choong Seon;Lee, Sungwon
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In cognitive radio or dynamic spectrum access networks, a rendezvous represents meeting two or more users on a common channel, and negotiating to establish data communication. The rendezvous problem is one of the most challenging tasks in cognitive radio ad hoc networks. Generally, this problem is simplified by using two well-known mechanisms: the first uses a predefined common control channel, while the second employs a channel hopping procedure. Yet, these two mechanisms form a life cycle, when they simplify the rendezvous problem in cognitive radio networks. The main purpose of this paper is to point out how and why this cycle forms.

Rendezvous in Cognitive Radio Networks without Common Control Channel

  • Htike, Zaw;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.230-231
    • /
    • 2011
  • In this paper, we propose a rendezvous mechanism for cognitive radio networks. In this mechanism, no prior knowledge of wireless nodes is required and it is totally distributed. Node can simply choose one of two strategies to rendezvous with its neighbors. The main benefit of this mechanism is eliminating the use of common control channel and centralized controller.

Receiver-driven Channel Rendezvous for Multi-channel Wireless Sensor Networks

  • Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.359-360
    • /
    • 2011
  • In this work. a new receiver-driven channel rendezvous mechanism is proposed for multi-channel communication in Wireless sensor networks (WSNs). The work is a light-weight scheduled scheme. seems to be incurring less overhead in compare to traditional common control channel based rendezvous mechanisms.

Achieving Agility in Blind Spectrum Rendezvous in Cognitive Radio Networks (인지무선네트워크에서 블라인드 스펙트럼 랑데부 지연의 단축)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.189-196
    • /
    • 2020
  • In cognitive radio networks, secondary transmitters should cease its transmission immediately on detecting of primary transmission in the spectrum they are accessing. Then they should exploit another idle spectrums and handoff to the newly found idle spectrums, which is called spectrum rendezvous. With regards to spectrum rendezvous, most of related work presume the existence of dedicated common control channel used by secondary users for exchanging the information of idle spectrums. However, this presumption is not feasible in real world cognitive radio scenario. Therefore we address a blind spectrum rendezvous scheme with no need of separate control channel. Furthermore we consider maintaining one or more extra spectrums (channels) to expedite the spectrum rendezvous. Our scheme lets secondary users maintain extra spectrums by exchanging the spectrum information periodically during normal communications. The one of the extra spectrums are regarded as a candidate spectrum that the users can handoff to on detecting the primary transmission. We evaluate that our blind scheme can help to reduce the rendezvous delay in a real world cognitive radio environments with USRPs.

Channel Searching Sequence for Rendezvous in CR Using Sidel'nikov Sequence (시델니코프 수열을 활용한 인지통신의 Rendezvous를 위한 채널 탐색 수열)

  • Jang, Jiwoong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1566-1573
    • /
    • 2021
  • Rendezvous is a process that assists nodes in a Cognitive Radio Networks (CRNs) to discover each other. In CRNs where a common control channel is unknown and a number of channels are given, it is important how two nodes find each other in a known search region. In this paper, I have proposed and analyzed a channel hopping sequence using Sidel'nikov sequence by which each node visits an available number of channels. I analyze the expected time to-rendezvous (TTR) mathematically. I also verify the Rendezvous performance of proposed sequence in the view of TTR under 2 user environment compared with JS algorithm and GOS algorithm. The Rendezvous performance of proposed sequence is much better than GOS algorithm and similar with JS algorithm. But when M is much smaller than p, the performance of proposed sequence is better than JS algorithm.

A Multi-Node Channel Rendezvous Algorithm in Cognitive Radio Ad-hoc Networks (인지 무선 애드혹 네트워크에서의 멀티노드 채널 랑데부 알고리즘)

  • Seong, Jin-uk;Lee, Bong-Hwan;Yang, Dongmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • In this paper, we focus on the study of multi-node rendezvous on one common channel among multiple channels before transmitting in CRAHNs (Cognitive Radio Ad-hoc Networks) for the efficient use of inefficient frequency resources. Most existing researches have dealt with the channel rendezvous between two nodes. But, it can be time-consuming to apply them to three or more nodes. In addition, it cab be impossible to communicate with each other. Therefore, in this paper, we propose a Multi-Node Sequence (MNSEQ), which allows three or more nodes to rendezvous on a single common channel in a short period of time. And, CSMA/CA was applied for data exchange after rendezvous. By performance evaluation through very extensive simulations, we have demonstrated that the proposed MNSEQ outperforms the existing scheme in terms of communication completion time and transmission efficiency.

A survey on Rendezvous Algorithms in Cognitive Radio Networks Under Jamming Attacks (재밍 공격 상황을 고려한 인지무선 네트워크에서의 랑데뷰 알고리즘들에 관한 분석)

  • Martin, Robin;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.209-219
    • /
    • 2021
  • The problem of congestion in the licensed radio channels spectrum can be solved by Cognitive Radio Networks (CRN). Several algorithms exist to ensure the rendezvous between Secondary Users (SUs), they are increasingly efficient, allowing faster rendezvous under multiple scenarios. In parallel, several jamming algorithms are developed to counter rendezvous which are also improving. The goal in CRN is to ensure the rendezvous by warding such jammers with robust algorithms. In this paper, we classify various jamming techniques and analyze the performance of various well-known rendezvous algorithms under jamming attacks.

Vicious Cycle of MAC Protocols of Cognitive Radio Ad Hoc Networks: Problem Statement

  • Htike, Zaw;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.294-296
    • /
    • 2012
  • In cognitive radio ad hoc networks, secondary users need to exchange control information before data transmission. This task is not trivial in cognitive radio networks due to the dynamic nature of environment. This problem is sometime called rendezvous problem of cognitive radio network. The rendezvous problem is normally tackled by using two famous approaches: the use of common control channel (CCC) and using channel hopping (a.k.a sequence-based protocols). However, these two famous solutions form a vicious cycle while solving the rendezvous problem. The main purpose of this paper is to point out how and why this vicious cycle is formed.

Efficient Channel Management to Maximize Spectrum Holes in Cognitive Radio Networks (CR 네트워크에서의 유휴자원 증대를 위한 효율적인 채널 관리 방법)

  • Jeong, Pil-Jung;Shin, Yo-An;Lee, Won-Cheol;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10B
    • /
    • pp.621-629
    • /
    • 2007
  • In cognitive radio (CR) network, the channels are generally classified into either the unavailable channels that are occupied by incumbent users or the available channels that are not occupied. The conventional channel classification scheme may result in poor utilization of spectrum holes since it does not take the spatial relationship between CR node and incumbent users into consideration. In this paper, we propose an efficient channel management scheme for the centralized CR network to maximize the spectrum holes by overcoming the shortcomings of conventional scheme. In addition, we mathematically analyze the effectiveness of proposed scheme. Based on the proposed channel management scheme, we also propose the rendezvous algorithm, which can establish the control channels between base station and CR node under the dynamically changing spectrum environment.