• Title/Summary/Keyword: channel feedback

Search Result 522, Processing Time 0.021 seconds

Feedback Cancellation Based on Partitioned Time-Domain Pilots for T-DMB Repeaters (시간영역 파일럿 분할을 통한 T-DMB 중계기에서의 궤환신호 제거기법)

  • Lee, Ji-Bong;Kim, Wan-Jin;Park, Sung-Ik;Lee, Yong-Tae;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.327-334
    • /
    • 2008
  • Conventional on-channel-repeaters (OCRs) have a crucial problem that the power of a re-transmitted signal is highly limited by a feedback signal due to antenna coupling. The power limitation problem in OCRs has been solved by incorporating a demodulation-type feedback canceller which eliminates unwanted feedback signals by estimating a feedback channel. In applying the demodulation-type feedback canceller to T-DMB repeaters, there is a troublesome problem of unfrequent known pilot symbols, resulting in poor convergence performance of channel estimation. To solve this problem and enhance the accuracy of estimation, we propose a partitioning method of the Phase Reference Symbol (PRS) transformed in time domain. Since filter coefficients are updated every one partitioned subgroup, the number of updates is increased by the number of partitioned subgroups and thus the convergence speed is enhanced. The improved performance of feedback-channel estimation is directly connected with the feedback-cancellation performance. Simulation result shows that the feedback canceller incorporating the proposed partitioning method has a good performance in terms of residual feedback power.

An Efficient Adaptive Modulation and Coding Scheme on Downlink Rayleigh Fading Channels Considering Channel-State-Information Feedback Delay (하향 링크 레일리 감쇄 채널에서의 채널 상태 정보 궤환 지연을 고려한 효율적인 적응 전송 기법)

  • Rhee, Du-Ho;Hwang, Hae-Gwang;Sang, Young-Jin;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1100-1106
    • /
    • 2006
  • In downlink of mobile communication systems, the feedback delay between channel estimation and actual transmission causes inaccuracy in channel-state-information (CSI) and this results in performance degradation. In order to overcome this phenomenon, channel prediction is inevitable. In this paper, an adaptive transmission scheme based on channel prediction is proposed and its performance is evaluated. From simulation results, it is shown that the performance degradation due to the feedback delay is successfully mitigated by using the proposed scheme.

Performance Evaluation of Interference Alignment Based on Analog CSI Feedback in Continuously-Varying Interference Channel (연속적으로 변하는 간섭채널에서 아날로그 피드백을 이용한 간섭정렬의 성능 평가)

  • Song, Kyoung-Young;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.65-67
    • /
    • 2014
  • In this letter, the performance of the interference channel with continuously varying channel is evaluated by using interference alignment based on practical channel estimation and channel state information(CSI) feedback and ideal Doppler frequency estimation. In this paper, performance evaluation is performed in terms of sum rate for 3-user interference channel. And also, sum rate is measured according to frequency of channel estimation relating with the calculation complexity. Simulation results show that the proposed scheme outperforms the conventional one which assumes that the channel is constant in a frame in some circumstances.

Build-in Wiretap Channel I with Feedback and LDPC Codes

  • Wen, Hong;Gong, Guang;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2009
  • A wiretap channel I is one of the channel models that was proved to achieve unconditional security. However, it has been an open problem in realizing such a channel model in a practical network environment. The paper is committed to solve the open problem by introducing a novel approach for building wiretap channel I in which the eavesdropper sees a binary symmetric channel (BSC) with error probability p while themain channel is error free. By taking advantage of the feedback and low density parity check (LDPC) codes, our scheme adds randomness to the feedback signals from the destination for keeping an eavesdropper ignorant; on the other hand, redundancy is added and encoded by the LDPC codes such that a legitimate receiver can correctly receive and decode the signals. With the proposed approach, unconditionallysecure communication can be achieved through interactive communications, in which the legitimate partner can realize the secret information transmission without a pre-shared secret key even if the eavesdropper has better channel from the beginning.

Channel Quantization for Block Diagonalization with Limited Feedback in Multiuser MIMO Downlink Channels

  • Moon, Sung-Hyun;Lee, Sang-Rim;Kim, Jin-Sung;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Block diagonalization (BD) has been proposed as a simple and effective technique in multiuser multiple-input multiple-output (MU-MIMO) broadcast channels. However, when channel state information (CSI) knowledge is limited at the transmitter, the performance of the BD may be degraded because inter-user interference cannot be completely eliminated. In this paper, we propose an efficient CSI quantization technique for BD precoded systems with limited feedback where users supported by a base station are selected by dynamic scheduling. First, we express the received signal-to-interference-plus-noise ratio (SINR) when multiple data streams are transmitted to the user, and derive a lower bound expression of the expected received SINR at each user. Then, based on this measure, each user determines its quantized CSI feedback information which maximizes the derived expected SINR, which comprises both the channel direction and the amplitude information. From simulations, we confirm that the proposed SINR-based channel quantization scheme achieves a significant sum rate gain over the conventional method in practical MU-MIMO systems.

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Optimum Beamforming Vector Indexing Scheme for Codebook based MISO System over Feedback Error Channel (피드백 오류 채널에서 코드북 기반 MISO 시스템의 최적에 빔포밍 벡터 인덱싱 기법)

  • Lee, Jin-Hee;Ko, Young-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.991-997
    • /
    • 2009
  • Transmit beamforming is simple method to achieve the full diversity gain that is available in multiple antenna(MIMO) wireless systems. Unfortunately, the prior condition to achieve this gain requires perfect channel knowledge at both transmitter and receiver, which is impractical on account of limited feedback link. Therefore, for the practical system, codebook based feedback scheme is often employed, where the beamforming vector is selected from the codebook to maximize the output signal-to-noise ratio (SNR) at receiver, and the receiver only sends back the index of the best beamforming vector to the transmitter. In this paper we derive analytical expression of average bit error rate (BER) for the codebook based transmit beamforming MISO system over the feedback error channel. Using this analytical result, we present optimum codebook indexing scheme to improve the performance of this system. From some selected numerical examples we show that our proposed codebook indexing scheme can provide nonnegligible performance improvements in terms of average BER over the severe feedback error channel.

STBC Detection Algorithm Using Double-Decision-Feedback Scheme in Time-Varying Rayleigh-Fading Channel (시변 레일리 페이딩 채널에서 이중 판정 궤환 방식을 이용한 STBC 검출 알고리즘)

  • Park, Sung-Joon;Heo, Seo-Weon;Lee, Ho-Kyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1237-1242
    • /
    • 2007
  • In this paper, we study STBC(Space Time Block Code) detection scheme in time varying Rayleigh fading channel. When the channel is varying during the time duration of STBC, the channel matrix of orthogonal STBC is not orthogonal. To get the optimum reception performance in this channel, joint ML detection scheme may be used, however this scheme requires high computation complexity. Decision feedback scheme is proposed to reduce the computation complexity with less reception performance. In this paper, we propose a novel STBC detection algorithm using double decision feedback which is less complex than the joint ML scheme and outperforms the conventional decision feedback scheme.

Cooperative Spectrum Sensing with Feedback Error in the Cognitive Radio Systems (무선 인지 시스템에서 궤환 오류를 고려한 협력 스펙트럼 센싱 기법에 관한 연구)

  • Oh, Dong-Chan;Lee, Heui-Chang;Lee, Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.364-370
    • /
    • 2010
  • In this paper, we propose a cooperative channel sensing scheme in the presence of feedback errors. Accurate local sensing results may not directly be applied to cooperative sensing due to feedback errors. We consider the cooperative channel sensing that utilizes local sensing results in good feedback channel condition. Finally, simulation results show that the proposed scheme can maximize the detection probability while guaranteeing desired false alarm probability.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.