• Title/Summary/Keyword: channel coding

Search Result 913, Processing Time 0.21 seconds

On the Performance of STBC/Beamforming Systems for High Speed Trains (고속 열차를 위한 다중안테나 시스템 성능 분석)

  • 이철진;신승훈;최규형;황현철;곽경섭
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.400-405
    • /
    • 2004
  • Recently, MIMO communications are regarded as one of the most promising emerging wireless technologies. This paper investigates MIMO wireless systems and their applications in a railway communication system. We firstly discuss railway communication environments including propagation characteristics and radio channel modeling. Next, we consider channel estimate methods, which is a crucial issue under rapidly varying channel condition due to the movement of trains. Channel estimation methods for MIMO systems are addressed and the effect of estimation error is studied. We also have performed simulations for transmit beamforming system and STBC(Space-time block coding) to investigate the performance of MIMO schemes in railway systems.

Performance Comparison of Coherent and Non-Coherent Detection Schemes in LR-UWB System

  • Kwon, Soonkoo;Ji, Sinae;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.518-523
    • /
    • 2012
  • This paper presents new coherent and non-coherent detection methods for the IEEE 802.15.4a low-rate ultra-wideband physical layer with forward error correction (FEC) coding techniques. The coherent detection method involving channel estimation is based on the correlation characteristics of the preamble signal. A coherent receiver uses novel iterated selective-rake (IT-SRAKE) to detect 2-bit data in a non-line-of-sight channel. The non-coherent detection method that does not involve channel estimation employs a 2-bit data detection scheme using modified transmitted reference pulse cluster (M-TRPC) methods. To compare the two schemes, we have designed an IT-SRAKE receiver and a MTRPC receiver using an IEEE 802.15.4a physical layer. Simulation results show the performance of IT-SRAKE is better than that of the M-TRPC by 3-9 dB.

Real-time 256-channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호획득을 위한 실시간 256-채널 12-bit 1ks/s 하드웨어)

  • Yoo, Jae-Tack
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.643-649
    • /
    • 2005
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUD) sensors for precise MCG(MagnetoCardioGram) signal acquisitions. Such system needs to deal with hundreds of sensors, requiring fast signal sampling md precise analog-to-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit in 1 ks/s speed, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and specially designed parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 mili-second sampling interval. We extend the design into 256-channel hardware and analyze the speed .using the measured data from the 64-channel hardware. Since our design exploits full parallel processing, Assembly level coding, and NOP(No Operation) instruction for timing control, the design provides expandability and lowest system timing margin. Our result concludes that the data collection with 256-channel analog input signals can be done in 201.5us time-interval which is much shorter than the required 1 mili-second period.

Performance Investigation of Space-Time Block Coded Multicarrier DS-CDMA in Time-Varying Channels

  • Narzullaev, Anvar;Ryu, Kwan-Woong;Park, Yong-Wan
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.684-687
    • /
    • 2006
  • In this letter, we evaluate the system performance of a space-time block coded (STBC) multicarrier (MC) DS-CDMA system over a time selective fading channel, with imperfect channel knowledge. The average bit error rate impairment due to imperfect channel information is investigated by taking into account the effect of the STBC position. We consider two schemes: STBC after spreading and STBC before spreading in the MC DS-CDMA system. In the scheme with STBC after spreading, STBC is performed at the chip level; in the scheme with STBC before spreading, STBC is performed at the symbol level. We found that these two schemes have various channel estimation errors, and that the system with STBC before spreading is more sensitive to channel estimation than the system with STBC after spreading. Furthermore, derived results prove that a high spreading factor (SF) in the MC DS-CDMA system with STBC before spreading leads to high channel estimation error, whereas for a system with STBC after spreading this statement is not true.

  • PDF

Sub-channel Allocation Scheme for Multi-media Service in AMC-based OFDMA Systems (AMC 기반 OFDMA 시스템에서 멀티미디어 서비스를 지원하기 위한 서브 채널 할당 방법)

  • Song, Woo-Ram;Chong, Jo-Woon;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.178-188
    • /
    • 2009
  • In this paper, we propose the method which provides efficient sub-channel allocation for handoff and new call supporting multi-media service in AMC-based OFDMA system. Firstly, we apply the multi-band method which provides different AMC method according to the location of user terminals. Also, in OFDMA system environment that a base station has a lot of sub-channels, we adopt the sub-channel allocation scheme that provides a higher priority to handoff call and real-time service about handoff and new calls with multi-meida service. The simulation results show that the proposed scheme plays a role in increasing the number of new and handoff calls meeting the required blocking rate.

Adaptive Channel Attenuation Compensation Scheme for Minimum PAR in Satellite OFDMA Downlink (위성 OFDMA Downlink에서 PAR을 최소화 하기 위한 사용자 부채널 할당 및 채널 보상 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Ahn, Do-Seob;Kang, Kun-Seok;Kim, Hee-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • We investigate the adaptive channel attenuation compensation of satellite OFDMA downlink users for minimum PAR (Peak to Average power Ratio), which is one of the main challenging issues in satellite OFDMA application. First, we analyze and compare PAR performances of two main different channel attenuation compensation schemes for OFDMA, i.e., PC-OFDMA (power control OFDMA) and AMC-OFDMA (Adaptive Modulation and Coding). While AMC-OFDMA maintains the constant transmission powers through entire user data subcarriers, PC-OFDMA has non-uniform subcarrier transmission powers because subcarrier powers are separately controlled to compensate each user's sub-channel attenuation. We newly found the fact that non-uniform subcarrier power in PC-OFDMA achieves rather reduced PAR compared to AMC-OFDMA and the amount of reduction becomes larger as the power differences among subcarriers increase. Also, there is an additional PAR reduction in PC-OFDMA by optimizing subcarrier grouping scheme for user's sub-channelization.

  • PDF

Performance Analysis of Pilot Symbol Assisted Trellis-Coded 8PSK with Timing Recovery Circuits on the Frequency-Nonselective Rayleigh Fading Channel (주파수 비선택적 레일리 페이딩 채널에서의 타이밍 복구회로를 고려한 PSA-TC-8PSK의 성능 분석)

  • 이병로
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.419-425
    • /
    • 2001
  • In land mobile communications, multipath fading is one of the key factors which affect the system performance. Some extensive studies have been carried out to improve the degraded performance under this fading channels. The PSAM channel compensation method using channel fading estimation is widely used and TCM is a combined coding and modulation technique that has been shown to provide significant coding gain without increasing the transmission bandwidth. In this paper, we analyze the performance of PSA-TC-8PSK which combines PSAM and TCM over frequency nonselective fading channels. To estimate channel fading, Wiener filter which minimizes error variance is used as compensation method and we analyze the affects on the system performance of the number of filter taps, period of the pilot symbol frame, and the Doppler frequency. In addition, we consider the symbol timing recovery circuit which can be implemented in the full-digital method and analyze the effects of symbol timing error on the system performance.

  • PDF

Transmission Error Detection and Copyright Protection for MPEG-2 Video Based on Channel Coded Watermark (채널 부호화된 워터마크 신호에 기반한 MPEG-2 비디오의 전송 오류 검출과 저작권 보호)

  • Bae, Chang-Seok;Yuk, Ying-Chung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.745-754
    • /
    • 2005
  • This paper proposes an information hiding algorithm using channel coding technique which can be used to detect transmission errors and to protect copyright for MPEG-2 video The watermark signal is generated by applying copyright information of video data to a convolutional encoder, and the signal is embedded into macro blocks in every frame while encoding to MPEG-2 video stream In the decoder, the embedded signal is detected from macro blocks in every frame, and the detected signal is used to localize transmission errors in the video stream. The detected signal can also be used to claim ownership of the video data by decoding it to the copyright Information. In this stage, errors in the detected watermark signal can be corrected by channel decoder. The 3 video sequences which consist of 300 frames each are applied to the proposed MPEG-2 codec. Experimental results show that the proposed method can detect transmission errors in the video stream while decoding and it can also reconstruct copyright information more correctly than the conventional method.

The Channel Scheduler based on Water-filling Algorithm for Best Effort Forward Link Traffics in AMC/TDM/CDM System (AMC/TDM/CDM 다중접속방식에서의 Best Effort 순방향 서비스를 위한 Water-filling Based 채널 스케줄러)

  • Ma, Dongl-Chul;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2003
  • The channel scheduler is suggested the radio resource management method in order to provide service with guaranteeing fairness and throughput to the users who use limited wireless channel. Proportional fairness scheduling algorithm is the channel scheduler used in the AMC(Adaptive Modulation and Coding)/TDM system, and this algorithm increases the throughput considering the user's time fairness. In this paper is suggested the channel scheduler combining CDM scheme available in AMC/TDM/CDM system. Unlike the system which only uses TDM which provide the only one user at the same slot, this scheduler can service a lot of users since this uses the CDM scheme with multi-cord channel. At every moment, allocation of transmission power to multi-channel users is problematic because of CDM scheme. In this paper, we propose a water-filling scheduling algorithm to solve the problem. Water-filling fairness(WF2) scheduling algorithm watches the average channel environment. So, this modified method guarantees fairness for each user in terms of power and service time.

  • PDF

Exact Decoding Probability of Random Linear Network Coding for Tree Networks

  • Li, Fang;Xie, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.714-727
    • /
    • 2015
  • The hierarchical structure in networks is widely applied in many practical scenarios especially in some emergency cases. In this paper, we focus on a tree network with and without packet loss where one source sends data to n destinations, through m relay nodes employing random linear network coding (RLNC) over a Galois field in parallel transmission systems. We derive closed-form probability expressions of successful decoding at a destination node and at all destination nodes in this multicast scenario. For the convenience of computing, we also propose an upper bound for the failure probability. We then investigate the impact of the major parameters, i.e., the size of finite fields, the number of internal nodes, the number of sink nodes and the channel failure probability, on the decoding performance with simulation results. In addition, numerical results show that, under a fixed exact decoding probability, the required field size can be minimized. When failure decoding probabilities are given, the operation is simple and its complexity is low in a small finite field.