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Abstract 
 

The hierarchical structure in networks is widely applied in many practical scenarios 

especially in some emergency cases. In this paper, we focus on a tree network with and 

without packet loss where one source sends data to n  destinations, through m  relay nodes 

employing random linear network coding (RLNC) over a Galois field in parallel transmission 

systems. We derive closed-form probability expressions of successful decoding at a 

destination node and at all destination nodes in this multicast scenario. For the convenience of 

computing, we also propose an upper bound for the failure probability.  We then investigate  

the impact of the major parameters, i.e., the size of finite fields, the number of internal nodes, 

the number of sink nodes and the channel failure probability, on the decoding performance 

with simulation results. In addition, numerical results show that, under a fixed exact decoding 

probability, the required field size can be minimized. When failure decoding probabilities are 

given, the operation is simple and its complexity is low in a small finite field. 
 

 

Keywords:  Network coding, tree topology, random linear network coding, exact decoding 

probability 
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1. Introduction 

Network coding (NC) has been shown to offer advantages in throughput, robustness, 

power consumption, and security in both wireline [1] and wireless networks [2], by 

allowing intermediate nodes to mix the information before forwarding it. Their work [1] 

was regarded as the commencement of research of NC. Li et al. [3] showed that linear 

network coding (LNC) can achieve the optimal throughput for a multicast transmission.  

Later, Ho et al. [4] proposed that an effective, yet simple, approach is random linear 

network coding (RLNC). They also analyzed the performance by deriving upper bounds 

for the failure of this code. Furthermore, Huseyin et al. [5] defined two types of failure 

probabilities to characterize the performance analysis of RLNC and improved bounds in 

[4]. Their bounds are described by the number of internal nodes, instead of the number of 

channels or similar quantities. 

Typically, the exact decoding probability under RLNC is derived in a fixed topology 

[6]- [8]. Trullols-Cruces et al. [6] computed the exact probability that a receiver obtains 

N  linearly independent packets among K N received packets, when the senders use 

RLNC over a Galois field. This problem is equivalent to computing the probability that a 

N K matrix has rank N , where each element is randomly selected from a Galois field 

with equal probability. Deriving the probability that this matrix has full rank in [7] can be 

viewed as a special case of Th. 1 in our work.    

In this paper, we consider that the source sends information to all sinks at the 

theoretically maximum rate with RLNC for tree networks. From the network topological 

perspective, hierarchical structures can be reduced to tree-type networks. In addition, tree 

structured networks are scalable to expand coverage by increasing the depth of tree 

networks due to their flexibility and low delay, making it suitable for a variety of 

emergency applications. Such topology is widely used and is a basic building block of 

more complex multi-hop networks [9]-[13]. Because the topology of tree networks with 

packet loss is dynamic, RLNC allows higher data rates than routing and the operation is 

simple.  

The main contributions of this paper are described as follows. Firstly, we derive the 

exact probability of RLNC over a Galois field for tree networks with and without packet 

loss. Secondly, for the convenience of computing, we propose upper bounds for the failure 

probability and improve the bound in [5] (Theorem 2) by replacing the number 

 
1m

m

  
 
 

 

by the number 1m  for tree networks to decrease the complexity. Here m  is the number 

of internal nodes,   is equal to k  , k  is the min-cut from s  to  all sinks t T , and 

  is the number of symbols generated at the source. Finally, we illustrate that, the impact 

of major parameters, i.e., the size of finite fields, the number of internal nodes, the number 

of sink nodes and the channel failure probability, on the decoding performance with 

simulation results. Numerical results also show that, under a fixed decoding probability, 

a required field size can be minimized. 

The remainder of this paper is organized as follows. Section II introduces the definition 

of RLNC and presents the network model of tree networks. Section III derives 

closed-form probability expressions of the defined model, proves main results and 
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describes numerical results. Section IV provides concluding remarks. 

2. Basic Definitions and the Network Model 

We consider a multi-hop relay tree network composed of one source, m  internal nodes and n  

sink nodes, i.e., 
1{ , , }nT t t  in parallel transmission system as shown in Fig. 1. There are 

k  multiple channels between two nodes. So, k  is the min-cut from s  to all sinks t T . 

Every channel can transmit one field symbol per unit time. Further, denote the channel leading 

from node i  to node j  by the direct edge  ,e i j , where node i  is called the tail of e and 

node j  is called the head of e .  For each node i , let  Out i  be the set of edges leaving node i  

and let  In i  be the set of edges entering node i . 

S

1t nt

1d d

1e

ke

 
 

Fig. 1. Network model. 
 

Source messages  1
, ,x xX


   arranged in a row vector over a Galois field qF  of 

size q  are transmitted to the source s  through   imaginary channels in  In s . Note that 

all of the arithmetic operations are performed over this field. Each of the m  relays  

encodes the received packets using RLNC, and it sends the resulting packet toward its 

child nodes.  Even if nodes in Fig. 1 join or leave, preexisting nodes do not need to change 

their coding operations to preserve the same guarantee of correctness. 
eU  is the message 

transmitted over the channel e . The coding process at each node i  is represented as 

follows: 

                                                 
( ( ))

e de d

d In tail e

U k U


                                                       (1) 
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where dek  is called local encoding kernel or coefficient. The coefficient used to encode 

the data packets is randomly extracted from a field 
qF , with equal probability. 

As we know from [14], [15], the global kernel ef  for a channel e  is a column vector 

such that  

                                                        
e eU X f                                                                  (2) 

The global kernels can be determined by the local kernels inductively by the next formula 

                                                   
( ( ))

e de d

d In tail e

f k f


                                                    (3) 

Therefore, we denote by tF  the k  matrix containing global kernels for channels in 

( )In t , i.e., 

                                                    ( : ( ))t dF f d In t                                                    (4) 

where tF  is called the decoding matrix at sink t . 

To simplify the discussion, we fix a sink node t T . Without loss of generality, let 

0 1 1
, ,

m m
s i i i i t


    

be an upstream to downstream order of nodes. The minimum cut capacity between the 

source node s  and the sink node t  is k , where k  . Denote tr  be the number of 

internal nodes in disjoint paths 
 tP  from s  to t . Furthermore, since the Menger's 

Theorem, there exit k  disjoint paths from s  to t  denoted by 
   

{ :1 }.
t t

j
j k  P P  Let 

 t
E
P

be the set of all channels in these k  paths.  Let 
     

,1 ,2 , 1{ , , , }
t

t t t

j j j r
e e e  be the sequence of 

channels in the path 
 t

j
P satisfying 

     , , 1
,:1

t t

j i j i thead e tail e i r


    
  ,1

t

j
tail e s  and 

  , 1t

t

j r
head e t  . 

In the following we use the concept of cuts from s  to t  represented in  [5]. Intuitively, 

the first cut is  0 1{ , , }CUT t d d and the second cut is    
1 ,1

{ : }1
t

i
CUT t e i k   . At 

node 1i , the next cut is defined from  1
CUT t  by replacing channels in    11

In i CUT t  

by their respective next channels in the path. Subsequently, once  j
CUT t is defined, 

 1j
CUT t


is formed from [5] by the same method as above. By induction, all cuts 

 j
CUT t for 0, , 1j m    can be defined. Furthermore, denote 

     in

j j j
CUT t In i CUT t  and      out

j

in

j j
CUT t CUT t CUT t  . 

Before discussion, we immediately introduce the definition of successful decoding 

probabilities as follows. For convenience, let  In t   be the linear space spanned by the 

global encoding kernel in  { : }ef e In t . 

Definition 1: The successful probability of random linear network coding at sink t  is 

                                                 

    

   

t

r r t

r

P P Rank F

P dim In t





 

   
                                      (5) 

and the successful probability of random linear network coding at all sink nodes is 
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                                :r r tP P t T Rank F                                       (6) 

As shown in [3] and [5], we have the following result for the network. There exist 

network codes such that the messages can be decoded successfully at sink t , if and only if 

any one of the following statements is true: 

1)   dim In t    ;  

2) there exist   linearly independent global encoding kernel vectors in 

 { : }
d

f d In t ; 

3)  t
Rank F  . 

In addition, main notations used in section 3 are as follows: 

qF :                  the finite field used. 

q :                   the size of the finite field qF . 

 :                  the number of symbols generated at the source node. 

 :                   the number of redundancies, i.e.,   is equal to k  . 

m :                 the number of internal nodes.  

n :                   the number of sink nodes. 

k :                   the min-cut from s  to  all sinks t T . 

tr :                   the number of internal nodes in disjoint paths 
 tP  from s  to t . 

r :                   the maximum number of tr , i.e., { : }tmax r t T .  

3. Results 

3.1 Exact Decoding Probabilities 

We have known that the performance analysis of RLNC plays an important part in theory 

and application. In general, it is difficult to compute the exact decoding probability of 

RLNC for a general communication network because the topology of a general 

communication network is unfixed. In this section, we calculate the exact decoding 

probability of RLNC for tree networks. At first, we give the following theorem. 

Theorem 1. Let L  be an n -dimensional linear space over finite field qF , 0L  and 1L  

be two subspaces of  dimensional 
0

k  and 
1

k  in space L , respectively, and 0 1 .L L L     

Let 
01, , ( 1)n k m rl l m    be r  uniformly distributed random vectors taking values in L . 

Then 

                     0 1

0

1
dim { , , } 1

1
ir r

r

q
p L l l n

i r n k

 
        

    

                   (7) 

Proof. To form the linear space L , we start with 
0

L , then add vectors in 
1
, , rl l to the 

subspace 
0

L  one by one. During the process of adding these vectors, if any vector il  falls 

in the space 
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01 { :1 1} ,i jB L l j i         

a failure or a redundancy occurs, where 00B L . Under the condition that 1i il B   for 

1 1j i   , we have 

   1 0 01 1idim B dim B i k i       . 

We prove this theorem by induction on 
0m r n k   , the index of the number of 

redundancies in 1L . 

For 1m  , we have 
0 1r n k   . Note that if a failure occurs firstly in the jth selection, 

there must not be any failure in the following sequence. If such failure occurs, with 

probability 
1

( )
0

( )

1

1
,

j

dim L

dim B

n k j

q

qq

 

  
  

we will leave exactly 
0n k  linear independent vectors. In the derivation, we obtain the 

probability that
0n k  linear independent vectors are picked, given 

0 1r n k    

selections, as 

                                           

0 0

1 0

0

1

1

+1

2

1
1

n k k jn in

r n n
r kj

n k

j
j

q q q
p

q q

q

  







 
  

 

 
  

 





                                          (8) 

By the above iterating method, we have proved it for 1m   and obtain the probability 

for 1m   

                               

10

1 0 1

0

1

1

1
1

1
1

m

m m

rrn k n n

r n n

r k

j

j

r rj

n k m

j m

q q
p

q q q

q





 

 

 

  

 

  
  

  

 
 
 

 



                                       (9) 

From the above equation, we can get the formula 

                               
1 0

1 0 1 0
1 1

1 1
1 1 .

m

m m

rr n k mm n n

n n

r k r rj j

j

n k

j

q q

q q q q


 

    

   
    

    
    

                                       (10) 

Assume that the result of the theorem is proved for 2, ,m , we now prove it for 1m , 

we have  
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 

110

1 0 1

10 1

1 0 1

0 0

0

1

1 1

1

1

1 1 2

1
1

1 1
1 1

1 1 1 1 1
1 1 1 1

( )

( ) ( ) ( )

m

m m

rrn k n n

r n n

r k r rj

rn k n r mna

j

r kl m j n r

n k n k mkm k m

l i j m k

l m i n k j km k

j

l n

m

q q
p

q q q

q

q q q

q q q q q







 

  

    

    



        

  

   

     

  
  
  

  
  
  

 

 

    

0

1

1

2

1
1( )

m

n k m

i m

i
q



  

 

 

 
 
 



               (11) 

where 0

1

n k
k

m






 
  

 and Eq. ( a ) can be obtained from Eq. (10). 

The theorem is proved.                                                                                                                  □ 

Remark 1. We can observe that 
0 1

dim { , , }( ( ))
r r

p L l l n     is not related to the 

dimension of 1L .We also notice that when 0 0k  , we get the following corollary. This 

corollary can be directly proved by the method in combinatory in [16], too. 

Corollary 2. Let L  be an n - dimensional linear space over finite field qF . Let 
1, , rl l  

be r  uniformly distributed random vectors taking values in L . Then 

1

1

1
dim { , , } 1( ( ))

r

r r i

i r n

p l l n
q  

     
 
 
 

                                    (12) 

Applying this corollary and the definition of jCUT , we compute exact decoding  

probability at a destination node and at all destination nodes in tree networks. In order to 

decode, a destination node has to collect as many linearly independent vectors as the 

number of packets that were originally mixed in, and then solve the resulting system of 

linear equations. The decoding probability thus depends on the coding design and the 

selected coefficients. The coefficients used to encode the data packets are extracted from a 

Galois field of size q.  

Theorem 3. For tree networks as shown in Fig. 1, let the minimum cut capacity for sink 

node t T be k and let the information rate be   symbols per unit time. Local encoding 

coefficients are chosen independently and uniformly from the finite field qF . 

(1) The failure decoding probability of RLNC at sink t  satisfies: 

                                                 
1

1

1
1 1[ ] trt

e l

l

k

P
q



 

  
 
 
 

                                            (13) 

(2) The failure decoding probability of RLNC for tree networks satisfies: 

1

1
1 1[ ]m n

e l

l

k

P
q



 

  
 
 
 

                                            (14) 

Proof. Given in Appendix A.                                                                                          □ 

In particular, we denote { : }tr max r t T  . The following corollary can be obtained 

immediately. 

Corollary 4: For tree networks as shown in Fig. 1, the failure decoding probability of 

RLNC at sink t  satisfies: 
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1

1

1
1 1[ ]t r

e l

l

k

P
q



 

  
 
 
 

                                          (15) 

  We have described that sometimes it is difficult to use predesigned LNC based on the 

network topology even if the topology is known. When nothing about the topology of tree 

networks except the number of internal numbers m  are known, we analyze the 

performance of  RLNC in the next corollary. 

Corollary 5. For tree networks as shown in Fig. 1, 

(1) the failure decoding probability of  RLNC at sink t  satisfies: 

                                                         
1

1( )
t

e

m
P

q q






                                                (16) 

 (2) the failure decoding probability of  RLNC for tree networks satisfies: 

                                                        
 1

eP
m n

q q





                                                 (17) 

We can notice that we improve the bound in [5] (theorem 2) by replacing the number 

1m

m

  
 
 

 

by the number 1m . As above mentioned, our analyses show that the failure probability 

is a function of m ,   and q . 

 In practice, due to various reasons, packet loss may occur. Unlike previous work, we 

consider that the relay nodes may not receive some packets due to link failures. This 

implies that a destination may be unable to successfully decode the received data packets 

due to both missing packets at the relays and linearly dependent coefficient vectors. In 

general, channel failure is a low probability event, that is, 0 1/ 2p  . In particular, 

when 0p  , the following theorem is equivalent to Theorem 3. 

Theorem 6. For tree networks as shown in Fig. 1 with channel failure probability p , 

(1) the failure decoding probability of  RLNC at sink t  satisfies:  

                               
1

1

1
1 [ 1 1 ]( ) trt k

lk
l

i

l

e

l i l

P p
q

p
k

l 



   

   
      

   
                             (18) 

 (2)  the failure decoding probability of  RLNC for tree network satisfies: 

                     
1

1
1 [ 1 1 ]( ) k l

lk
l

l
i

m n

e

i l

P p p
k

l q 

 

   

   
      

   
                             (19) 

Proof. Given in Appendix B.                                                                                          □ 

3.2 Numerical Results 

We now show the impact of major parameters on the decoding performance. In the following, 

we fix the number of symbols generated at the source 5  .  

As discussed above, our analysis concerns the decoding probability at a (all) sink node(s) 

without packet loss, as a function of the size of finite field q , (the number of sink nodes n ,) 

and  the number of internal nodes m  in Th. 3. Typically, the exact probability is limited to the 

linear independence of the random vectors employed for the encoding of received packets.  

Firstly, by a comparison of  Fig. 2.(a) and Fig. 2.(b), we observe that the number of sink 

nodes n  plays an important role in analysing the decoding performance. Under other 
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parameters are fixed, the smaller the number n  is in a tree network, the better performance it 

has. Secondly, represented by different continuous and dashed lines, Fig. 2 shows the exact  

decoding probability as a function of the size of finite field q , when   is fixed. Clearly, as 

q increases, the performance improves greatly. We also observe that for 16q   both of two 

successful probabilities are larger than 0.9  even in the presence of a small number of  

redundancy. Finally, represented by each continuous or dashed line, Fig. 2 shows the 

probability as a function of  ,when q  is determined. Obviously, as   increases to 2 , the 

performance improves dramatically. We can obtain that   has a significant impact on the 

decoding performance. 

    
(a)                                                                         (b)                                                                              

Fig. 2. (a) shows the simulation results and the exact decoding probability at sink t  obtained over 
5

10  runs when 5   and 3tr  . 

(b) shows the simulation results and the exact decoding probability at all sinks obtained 

over
5

10 runs when 5  , 10m  and 5n  .      

    
                                  (a)                                                                      (b)                                                                                                                                                           

Fig. 3 (a) shows the simulation results and the exact decoding probability at sink t  obtained over 
5

10  runs when 5  , 0.1p   and 3tr  . 

(b) shows the simulation and the exact decoding probability at all sinks obtained over 
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5
10 runs when 5  , 0.1p  , 10m  and 5n  . 

 

The main difference between Th. 3 and Th. 6 is that packet loss may occur in the latter. 

We now show the impact of major parameters, i.e., the size of finite fields, the number of 

internal nodes m , the number of sink nodes n  and the channel failure probability p , on 

the decoding performance at sink t and at all sinks with channel failure probability in 

Th. 6 .   

A comparison of  Fig. 3.(a) and Fig. 3.(b) shows that the number of sink nodes n  has a 

marked impact on the decoding performance, when other parameters are fixed. Clearly, as 

n  increases, the decoding probability decreases greatly. Among different lines, we also 

show that the decoding probability is a function of the size of finite field q , when  and 

p  are fixed. As q  increases, the performance improves greatly. Further, we observe that 

the decoding probability is a function of  , when q  and p  are fixed in each line. We 

observe that for 1,   very poor performance is obtained, indeed, the channel failure 

probability, which makes message decoding fail, has a dominant effect. Clearly, as   

increases to 2,   the performance improves greatly and as   increases to 3,  both of two 

successful probabilities are larger than 0.95  even in the presence of a small number .q  

Differences between analytical and simulative results are in the order of 
3

10


in Fig. 2 and 

Fig. 3. This implies that simulation results match analytical results very well.   

      
(a)                                                                          (b) 

Fig. 4. (a) shows a comparison of successful decoding probabilities with and without packet loss at 

sink t  as   varies. 

(b) shows a comparison of successful decoding probabilities with and without packet loss at 

all sinks as   varies. 

 

We investigate the impact of  the number of channel failure probability p  on the 

decoding performance in Fig. 4. This figure shows the comparison of successful decoding 

probabilities with and without packet loss with 5,  3,tr  10,m  5,n  0.05,p   

8,16,32q   and 1,2,3,4  . From the above figure, we can observe that our result in Th. 

3 and Th. 6 represented by blue lines and red lines, respectively, and for 1  with 

channel failure probability 0.05,p   very poor performance is obtained. As   increases 
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to 2， the performance improves greatly. However, as   increases from 3  to 4， the 

performance improves slowly. The importance of q  and p  is confirmed by Fig. 4.  

Numerical results further showed that, as the field size increases, the decoding 

performance improves significantly. 

4. Conclusion 

In this paper, we mainly investigated RLNC for tree networks with and without packet loss by 

combining techniques from linear algebra, network flows and randomization. We derived 

closed-form decoding probability expressions of tree networks, as a function of the size of 

finite fields, the number of internal nodes, the number of sink nodes and the channel failure 

probability. For the purpose of simple computing , we also proposed a sharper bound on the 

required field size, when the failure probability is given.We investigated the impact of these 

major parameters on the decoding performance at one sink and at all sinks with simulation 

results. Furthermore, numerical results illustrated that the required field size can be 

minimized, when other parameters are fixed. 

Appendix A 

Proof of Theorem 3 

We consider primarily the successful decoding probability
t

rP . By described above, 

computing the successful decoding probability is equivalent to the event 

   dim , .
e

f e In t   “ ” Further define k  matrices   :
t e

j

j
F f e CUT t   for 

1, , 1.j m    

Denote   :
et f e In tF   be the decoding matrix at sink t . Intuitively, 

1tr

t tF F

 . 

Denote the event  t

j
Rank F “ ”  by 

 
.

t

j  Because encoding at any sink is independent, 

the sink is successful as long as no failure has occurred up to this node. We obtain 
          

       

 
    

1 0

1 0

0

1

0

,
t

t t t t t

m m

m

r r

t t t

r j r

j

r

t t

r

j

j

jj

b

P p

p p

p











    

   

 





1

∣

∣

 

where Eq. ( b ) can be obtained because                                         
      0

1.
t

r r
p p Rank In s     

We compute the
    1

t

j

t

jrp


 ∣ as follows. According to the definition of the 1( )jCUT t , 

we choose the global decoding kernel of 1( ) ( )out

j je CUT t CUT t ‚ . To form the 

1( )jCUT t , we start with ( )ou

j

tCUT t , then add channels in 

 
1( ) ( ) ( )

t

j j jOut i CUT t Out i  P  to the set ( )ou

j

tCUT t . During the process of adding 

these vectors, we know that the vectors 1( ): ( )
l l j jef e CUT t Out i  does not fall in the 
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space  
1 1
, ,

l

j

t e eF f f


    with probability  
1

1
1

k

l

l q 


 
 
 

  by applying Corollary 2 

because ( )out

jCUT t   in the network model shown in Fig. 1. In the derivation, we get 

1

0 1 1

1 1
1 1 .[ ]

t

t

r k k
rt

r l l

j l l

P
q q 



    

   
   
   
   

   

  When the event 
 

,
t

k t T    occurs at the same time, we can get the decoding 

probability with all sinks receiving all the source messages successfully 

1

1
1 ,[ ]m n

r l

l

k

P
q



 

 
 
 
 

  

where k   , m  and n  are the number of internal nodes and sink nodes, respectively.   

The proof of the theorem is completed.   

Appendix B 

Proof of Theorem 6 

 At first, we consider the successful decoding probability 
t

rP . For each channel 
ie , if 

ie  is not deleted from the network, we call is successfu l
i

e“ ” . We define if  as the active 

global encoding kernel of 
ie , where 

, is successful;

0, otherwise.

 
i

i

e

e

if e
f


 


 

Thus, computing the successful decoding probability is equivalent to the event 

   dim , .ef e In t      Further define k matrices   :j

t e jF f e CUT t   for 

1, , 1.j m    

We use 
j

t  to denote the event  j

tRank F  “ ”  Intuitively, 
1

.tr

t tF F

 Because 

encoding at any sink is independent, we have 

                                                 

       

     

 
   

1 1 0

1 0

0

1

0

( )

( )

( )
t

t t t t

r r m m

m
t t t

r j j r

j

rc
t t

r j j

j

tP p

p p

p











    

   

  





∣

∣

                                      (20)           

where Eq. ( c ) can be obtained because the channel failure probability over imaginary 

incoming channels is =0p  and                                          

      0
1.

t

r r
p p Rank In s     

According to the definition of the 1( )jCUT t , we choose the global coding kernel of 

1( ) ( )out

j je CUT t CUT t ‚ . To form the 1( )jCUT t , we start with ( )ou

j

tCUT t , then add 
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channels in 
1( ) ( )j jCUT t Out i   to the set ( )ou

j

tCUT t . Under the condition 

( )out

jCUT t  , we obtain have 
 

1 1( ) ( ) ( ) ( ).
t

j j j jCUT t Out i CUT t Out i    P     

Denote 
1j

l


 be the event that “there are  l l k    successful channels in the process 

of adding channels to form 
1( )jCUT t

” i.e.,  1 1( ) , ,j lCUT t e e  .  

We calculate 

                           
           1 1

1 1,j j

r l r

k
t t t

r j

l

l

t

j j jp pp


  





    ∣ ∣                                  (21) 

in two steps as follows. 

The probability that there are  l l k    successful channels is given by  

                                   1 1
lj k l

r l

k
p p p

l
   

  
 

                                       (22) 

  Then, for a fixed value of j , we can write the probability  

                              
    

1

1

1 1
1,

i l

l

i

j

r j l

t t

jp
q


  



 





   
 

∣                                       (23) 

By replacing Eq. (24) and Eq. (25) in Eq. (23), we have  

                                
    

1

1

1
1 1( ) k l

l i

lk

l

i

l

t t

r j j p
k

ql
pp

 



   

  
   

     
  

 ∣                                 (24) 

In the derivation, we have 

    
1

1

1

0

1
[ 1 1 ] .( ) t

lk

l rk l

l i l

i

tr
t tt

r r j j

j

k

l
p p

q

p p

 


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



  

  

   
  
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 

 ∣

 

When the event 
 

,
t

j t T    occurs at the same time, we can get the decoding 

probability with all sinks receiving all the source messages successfully 

  

                                           
1

1
[ 1 1 ] .( ) k l

lk

l m n

i

l i l

r

k

l
p p

q
p

 



   


  

   
  
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                                         

 The proof is completed.                                                             
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