• Title/Summary/Keyword: channel access delay

Search Result 274, Processing Time 0.027 seconds

Improve Methods of IPTV Channel Zapping Delay Based on Client Access Pattern (가입자 접근패턴 기 반의 IPTV 채널전환지연 개선방법)

  • Oh, Sang-Su;Kim, Young-Mok;Beom, Soon-Kyun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.127-131
    • /
    • 2007
  • 본 논문에서 제안하고자 하는 IPTV 채널캐슁 서비스는 IPTV 서비스의 품질요소인 QoE(Quality of Experience)의 개선을 목적으로 하고 있다. IPTV 채널캐슁 방법은 IPTV 서비스가 실시간 방송 및 VOD(Video On Demand)등 다양한 패턴의 서비스를 선택하는 사용자의 채널요구 패턴을 반영한 인접채널(adjacent-channel)을 멀티캐스트하면, 사용자의 채널전환요구시 제어메시지 전송 및 스위칭에 소요되는 대기시간을 줄여 사용자의 채널전환지연시간을 개선할 수 있다. 이를 위하여 본 논문에서는 LRFU(Least Recently Frequently Used) 알고리즘에 기반한 MCA(Multicast Channel Agent)을 제안하며, MCA을 구성모듈에 대한 설명을 기술한다.

  • PDF

Improvement of Channel Efficiency in Mobile Communications by User Relay Scheme

  • JIA, Zhongning;MUTSUURA, Kouichi;AKIZUKI, Osamu;CHIN, YoonTze;HANDA, Shiro;OSHITA, Shinjiro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1447-1450
    • /
    • 2002
  • In this paper, we propose a new access method named UR (Use. Relay) scheme to improve the channel efficiency in mobile communications. In UR scheme, packets of a data terminal that do not demand real time communications are relayed by other terminals during their inactive periods, which ue communicating with the base station through a fixed channel at that time. Simulation results show that with UR scheme, the blocking probability md the throughput are improved considerably with an allowable increase in the average delay.

  • PDF

Performance Analysis of OCDMA on Plastic Optical Fiber Access Network (플라스틱 광섬유를 사용한 통신망에서 OCDMA의 성능 분석)

  • Zhang, Ke;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1083-1092
    • /
    • 2016
  • In this paper, the performance of the optical code-division multiple access (OCDMA) technology on a plastic optical fiber (POF) access network, which had received much attention due to its low weight, large core diameter, flexibility, easy installation, and especially its high bandwidth, is analyzed. Recently, POF was a very attractive candidate for transmission media in an access network based on OCDMA technology. But the conventional OCDMA system only allows finite units to transmit and access simultaneously according to the number of channels which are restricted by BER, and so, in this paper, to resolve this problem a novel multi-priority reservation protocol is also proposed. By using this reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict could be avoided. And this protocol can efficiently support the transmission of multimedia messages that require the different time-delay. The network throughput and average delay using various system parameters have been investigated by numerical analysis and simulation experiments. These results shows that the multi-priority reservation protocol in this POF access network based on OCDMA technology is valid and efficient.

A Three-way Handshaking Access Mechanism for Point to Multipoint In-band Full-duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Lin, Changlin;Li, Song;Xu, Hongli;Tan, Zefu;Wang, Yanfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3131-3149
    • /
    • 2016
  • In-band Full-duplex (IBFD) wireless communication allows improved throughput for wireless networks. The current Half-duplex (HD) medium access mechanism Request to Send/Clear to Send (RTS/CTS) has been directly applied to IBFD wireless networks. However, this is only able to support a symmetric dual link, and does not provide the full advantages of IBFD. To increase network throughput in a superior way to the HD mechanism, a novel three-way handshaking access mechanism RTS/SRTS (Second Request to Send)/CTS is proposed for point to multipoint (PMP) IBFD wireless networks, which can support both symmetric dual link and asymmetric dual link communication. In this approach, IBFD wireless communication only requires one channel access for two-way simultaneous packet transmissions. We first describe the RTS/SRTS/CTS mechanism and the symmetric/asymmetric dual link transmission procedure and then provide a theoretical analysis of network throughput and delay using a Markov model. Using simulations, we demonstrate that the RTS/SRTS/CTS access mechanism shows improved performance relative to that of the RTS/CTS HD access mechanism.

Multiuser Resource Allocation Scheme Considering Link Layer Effective Capacity in OFDMA Systems (직교 주파수 분할 다원 접속 시스템에서 실효 링크 계층 용량을 고려한 다중 사용자 자원 할당 기법)

  • Sung Si-Hwan;Yoo Myung-Sik;Shin Yo-An;Lee Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.508-516
    • /
    • 2006
  • The explosive growth of wireless network users and the existence of various wireless services have demanded high rate throughput as well as user's QoS guarantees. Towards this, this paper proposes QoS-oriented subcarrier allocation scheme considering the QoS provisioning of multiple users, which is major requirement for wireless network design point of view. This paper introduces joint RR/K&H combined with M-LWDF(Modified Largest Weighted Delay First) scheme throughout observing statistical channel behavior and real time queuing analysis for appropriate resource allocation tightly connected to multiuser scheduling. Accordingly, the system throughput can be enhanced, and the QoS demanded for delay sensitive services can be satisfied. Furthermore, the proposed scheme is applied for OFDMA(Orthogonal Frequency Division Multiple Access) systems to allocate sub-carriers in optimal way. The simulation results verify plausible performances of proposed resource allocation scheme via showing superior effective capacity under time-varying physical-layer channel behaviors.

Time Synchronization with Oceanic Movement Pattern in Underwater Wireless Networks (해수운동의 특성을 활용한 수중 무선 네트워크 시각 동기화)

  • Kim, Sungryul;Park, Seongjin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.486-496
    • /
    • 2013
  • Time synchronization in underwater environment is challenging due to high propagation delay and mobility of sensor nodes. Previous researches do not consider practical issues affecting on the accuracy of time synchronization such as high-channel access delay and relative position between sensor nodes. Also, those protocols using bidirectional message exchange shorten the network lifetime and decrease the network throughput because numerous transmission, reception and unnecessary overhearing can be occurred. Therefore, in our research, we suggest enhanced time synchronization based on features of underwater environment. It controls the instant of transmission by exploiting the feature of an oceanic movement and node deployment. Moreover, the protocol uses more accurate time information by removing channel access delay from the timestamp. The proposed scheme is also practical on the underwater sensor network requiring low-power consumption because the scheme conducts time-synchronization with smaller transmission and reception compared with previous works. Finally, simulation results show that the proposed protocol deceases time error by 2.5ms and 0.56ms compared with TSHL and MU-Sync respectively, reducing energy consumption by 68.4%.

Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions

  • Xu, Changchun;Gao, Jingdong;Xu, Yanyi;He, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.683-701
    • /
    • 2012
  • IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows.

A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks (지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜)

  • Cheon, Jin-Yong;Son, Kweon;Jang, Youn-Seon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1200-1209
    • /
    • 2011
  • In this paper, we propose a novel energy efficient MAC protocol which is based on orthogonal frequency division multiple access (OFDMA) and exploits the physical characteristic that propagation loss of acoustic wave depends on the distance. In the proposed scheme, sensor nodes are grouped according to the distance to sink node. Then, each group uses a different frequency band. The proposed scheme not only enables all sensor nodes to maintain the signal-to-noise ratio above a certain required level (Accepted Minimum SNR, AMS), but also reduces overall transmission power consumption. In addition, the dynamic sub-channel allocation is employed in order to improve data transmission rate. Simulations show that proposed MAC protocol has better performance in a delay-tolerant underwater acoustic sensor networks.

MAC Protocol for Single-Hop Underwater Sensor Network (싱글 홉 수중 센서 네트워크를 위한 매체접속제어 프로토콜 설계)

  • Baek, Seung-Kwon;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.499-505
    • /
    • 2009
  • Main design issues for MAC (Medium Access Control) protocol in underwater sensor networks are long propagation delay caused by the low speed of sound, difficult synchronization, and energy-limited node's life. We aimed to mitigate the problems of strict synchronization and channel inefficiency of TDMA and also the throughput degradation induced by unavoidable collisions in contention based MAC protocols. This proposed protocol improved not only the energy efficiency by adopting a sleep-mode, but also the throughput by reducing collisions and increasing channel efficiency.

A Study on the Performance Analysis of the DOCSIS 1.1 Protocol for Digital CATV Broadcasting (디지털 유선방송을 위한 DOCSIS 1.1 프로토콜의 성능분석에 관한 연구)

  • Kim Soo-Hee;Sohn Won;Kim Young-Soo;Hong Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1253-1262
    • /
    • 2004
  • The Data Over Cable System Interface Specification (DOCSIS) protocol enables the delivery of Internet Protocol(IP) traffic over Cable TV networks with significantly higher data rates. In this paper, we assessed the performance of the DOCSIS protocol using the OPNET. The simulation can be used to predict the upstream system throughput, mean access delay and channel utilization on varying packet size and transmission stream and wid/without concatenation, and it has shown that maximum system throughput is 4.6 Mbps for channel capacity of 5.12 Mbps and packet size of 1500 bytes. The mean access delay varies depending on the offered load, and it is assumed that the offered load does not exceed the capacity of the channel. Excess offered load causes service starvation according to the assigned priority.