• 제목/요약/키워드: channel access delay

검색결과 274건 처리시간 0.021초

ISDN D-채널 Access Protocol의 Delay 분석 (Delay Analysis of the ISDN D-channel Access Protocol)

  • 이구연;은종관
    • 한국통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.98-111
    • /
    • 1990
  • 본 논문에서는 CCITT에서 권고한 ISDN D-채널 access protocol의 queueing 모델을 제시하였으며 그 모델을 이용하여 signalling message와 packet message의 delay의 Laplace transform을 구하였다. 그 분석결과는 simulation을 통하여 검증하였으며, 또한 D-채널 access 시스템에서의 packet 및 signalling message 의 delay 특성에 대하여 비교 설명하였다.

  • PDF

A Simulation Study on Queueing Delay Performance of Slotted ALOHA under Time-Correlated Channels

  • Yoora Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.43-51
    • /
    • 2023
  • Slotted ALOHA (S-ALOHA) is a classical medium access control protocol widely used in multiple access communication networks, supporting distributed random access without the need for a central controller. Although stability and delay have been extensively studied in existing works, most of these studies have assumed ideal channel conditions or independent fading, and the impact of time-correlated wireless channels has been less addressed. In this paper, we investigate the queueing delay performance in S-ALOHA networks under time-correlated channel conditions by utilizing a Gilbert-Elliott model. Through simulation studies, we demonstrate how temporal correlation in the wireless channel affects the queueing delay performance. We find that stronger temporal correlation leads to increased variability in queue length, a larger probability of having queue overflows, and higher congestion levels in the S-ALOHA network. Consequently, there is an increase in the average queueing delay, even under a light traffic load. With these findings, we provide valuable insights into the queueing delay performance of S-ALOHA networks, supplementing the existing understanding of delay in S-ALOHA networks.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.

Performance Analysis of CMAP-WDMA MAC Protocol for Metro-WDMA Networks

  • Yun, Chang-Ho;Cho, A-Ra;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.480-488
    • /
    • 2009
  • A channel-shared modified accelerative pre-allocation wavelength division multiple access (CMAP-WDMA) media access control (MAC) has been proposed for metro-WDMA networks, as an extension of modified pre-allocation wavelength division multiple access (MAP-WDMA) MAC protocol. Similarly, CAP WDMA as an extension of accelerative pre-allocation wavelength division multiple access (AP-WDMA) MAC protocol. Performance of CMAP- and CAP-WDMA was extensively investigated under several channel sharing methods (CSMs), asymmetric traffic load patterns (TLPs), and non-uniform traffic distribution patterns (TDPs). The result showed that the channel utilization of the CMAP-WDMA always outperforms that of CAP-WDMA at the expense of longer channel access delay for channel shared case while CMAP-WDMA provided higher channel utilization at specific network conditions but always shorter channel access delay than CAP-WDMA for non-channel shared case. Additionally both for CMAP- and CAP-WDMA, determining an effective CSM is a critical design issue because TDPs and TLPs can be neither managed nor expected while CSM is manageable, and the CSM supporting the best channel utilization can be recommended.

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

고속광통신망용 새로운 WDM/TDM 프로토콜 (A new WDM/TDM protocol for very high speed optical networks)

  • 이상록;이성근;박진우
    • 전자공학회논문지A
    • /
    • 제33A권2호
    • /
    • pp.50-58
    • /
    • 1996
  • This paper proposes the channel-access protocol suitable to a very high speed photonic WDM network with star configuration, which can provide a high channel utilization and insensitivity to the propagation delay. The proposed protocol employs a control channel and a simple status table to deal with the propagation delay which has been a major limiting factor in the performance of the very high speed optical communication networks. The control channel transmits control information in order to reserve access on data channels, and each node constitutes a status table after the reception of control pckets which holds information about the availbility of destination node and data channel. The proposed protocol is insensitive to the propagation delay time by removing necessity of the retransmission and by allowing parallel transmission of control packet and data packets. It is proved in analysis and discrete event simulation that the proposed protocol is superior in throughput and mean delay, especially at the high load conditions compared to the existing high speed channel-access protocols.

  • PDF

ISDN D-채널 엑세스 프로토콜의 성능 분석 (Performance Analysis of ISDN D-Channel Access Protocol)

  • 박성현;은종관
    • 한국통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.602-617
    • /
    • 1990
  • 본 논문에서는 CCITT에서 권고된 종합 정보 통신망(Integrated Service Digital Network:ISDN)에서의 가입자와 망간의 접속에 있어 S-기준점에서의 D-채널 엑세스 프로토콜의 성능을 분석하였다. 먼저 여러대의 단말이 멀티 포인트로 D-채널을 액세스하는 경우의 D-채널 엑세스 프로토콜의 queueing 모델을 세웠다. 그리고 지연 요소를 waiting queue지연과 경쟁 지연으로 구분하고, 다시 경쟁 지연을 모효 경쟁 지연과 순수 경쟁 지연으로 자누어 해석하므로서 대칭 또는 비대칭의 평균 도착률을 가진 우선도 서비스의 queueing시스템에 모두 적용할 수 있도록 하였다. 또한 대칭 시스템과 비대칭 시스템에 대한 수치 결과를 얻어, 한 단말에서 모든 정보가 지선제 우선도로 서비스되는 queueing 시스템과 비교하였다.

  • PDF

동질 트래픽 조건에서 IEEE 802.12 VG-AnyLAN 매체접근제어의 지연시간과 채널이용율 해석 (Delay and Channel Utilization Analysis of IEEE 802.12 VG-AnyLAN Medium Access Control under the Homogeneous Traffic Condition)

  • 주기호
    • 정보처리학회논문지C
    • /
    • 제13C권5호
    • /
    • pp.567-574
    • /
    • 2006
  • VG-AnyLAN은 IEEE 802 위원회에서 제정한 100Mbps 근거리통신망 표준으로서 프레임 포맷은 기존 IEEE 802.3 이더넷의 형식을 그대로 유지한 반면에 매체접근제어 방식은 Demand Priority라 불리는 새로운 방식을 채택하였다. 이 방식에서 스테이션의 전송요청은 제어허브에 의하여 주기적으로 스캔되어 순서에 따라 전송된다. 이더넷의 매체접근제어방식인 CSMA/CD와 달리 이 방식은 네트워크 세그멘트 크기에 제한을 두지 않으며 패킷 지연시간에 최대 한계를 가진다. 본 논문에서 IEEE 802.12 VG-AnyLAN 매체접근제어 방식의 매체접근 지연시간과 채널 이용율(channel utilization)을 평가하였다. 각 스테이션에서 발생하는 트래픽의 우선순위가 모두 같으며, 패킷사이즈가 일정하다는 가정아래 시스템의 해석적 모델을 구축하고, 이를 이용하여 부하변동에 따른 시스템의 패킷 지연시간과 채널이용율의 순환 표현식을 얻었다. 또한 본 논문에서 얻은 결과를 뒷받침하기 위해 시스템 대한 시뮬레이션을 수행하여 주요 지표에 대하여 수치해석 결과와 비교 분석하였다.

CDMA 패킷 서비스 시스템에서 Common Channel Access 방법의 성능 평가 (Performance Evaluation of the Common Channel Access Method in CDMA Packet Service System)

  • 이강원
    • 산업공학
    • /
    • 제17권3호
    • /
    • pp.294-304
    • /
    • 2004
  • In the IS-95 packet service system, the radio channels are generally classified into the dedicated and common traffic channels. In this paper, the performance of the common traffic channel access method is evaluated using simulation. The simulation results are compared with those of random access method. Simulation results show that the capacity can be increased up to 25% by applying the proposed common channel access method. The delay problem and variance of BER are also discussed.

Throughput and Delay Analysis of a Reliable Cooperative MAC Protocol in Ad Hoc Networks

  • Jang, Jaeshin;Kim, Sang Wu;Wie, Sunghong
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.524-532
    • /
    • 2012
  • In this paper, we present the performance evaluation of the reliable cooperative media access control (RCO-MAC) protocol, which has been proposed in [1] by us in order to enhance system throughput in bad wireless channel environments. The performance of this protocol is evaluated with computer simulation as well as mathematical analysis in this paper. The system throughput, two types of average delays, average channel access delay, and average system delay, which includes the queuing delay in the buffer, are used as performance metrics. In addition, two different traffic models are used for performance evaluation: The saturated traffic model for computing system throughput and average channel access delay, and the exponential data generation model for calculating average system delay. The numerical results show that the RCO-MAC protocol proposed by us provides over 20% more system throughput than the relay distributed coordination function (rDCF) scheme. The numerical results show that the RCO-MAC protocol provides a slightly higher average channel access delay over a greater number of source nodes than the rDCF. This is because a greater number of source nodes provide more opportunities for cooperative request to send (CRTS) frame collisions and because the value of the related retransmission timer is greater in the RCO-MAC protocol than in the rDCF protocol. The numerical results also confirm that the RCO-MAC protocol provides better average system delay over the whole gamut of the number of source nodes than the rDCF protocol.