• 제목/요약/키워드: changes of soil microorganisms

검색결과 74건 처리시간 0.029초

생강연작재배지에서 Pythium zingiberum 경감을 위한 녹비작물 재배효과 (Effect of Green Manure Crops Incorporation for Reduction of Pythium zingiberum in Ginger Continuous Cultivation)

  • 정유진;노일섭;김용권;강권규
    • 한국자원식물학회지
    • /
    • 제28권2호
    • /
    • pp.271-278
    • /
    • 2015
  • 생강연작재배지 토양에 녹비작물의 재배가 토양 양분의 변화와 뿌리썩음병원균 경감효과를 알기위해 헤어리베치, 크림손클로버, 오차드글라스를 80일간 재배 후, 토양에 환원하여 토양분석 및 real-time PCR 분석한 결과는 다음과 같다. 녹비작물의 생육은 크림손클로버가 가장 좋았으며, 질수흡수량은 크림손클로버가 가장 높게 나타났으며, 토양의 인산함량은 오차드글라스가 가장 낮게 나타났다. T-N 함량은 헤어리벳치 > 크림손클로버 > 오차드글라스 순으로 나타났다. 또한 토양 내 뿌리썩음 병원균 밀도분석을 위해 Pythium zingiberum 균 특이 5.8S rDNA를 이용하여 real-time PCR 분석한 결과 헤어리베치, 오차드그라스 및 크림손클로버 처리의 Ct값은 대조구보다 낮게 나타났다. 이상의 결과를 요약해볼 때 생강연작재배지에서 녹비처리 후 토양은 대조구에 비해 EC가 감소되고, 몇 몇 무기성분은 증가하였으며, 뿌리썩음 병원균 밀도는 감소하였다.

Fate of Genetically Engineered 2,4-D-Degrading Microorganisms in Natural Soils and Waters

  • Hong, Seok-Myeong;Lee, Yin-Won;Kim, Chi-Kyung;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.320-326
    • /
    • 1996
  • To analyze the effects of host versus plasmid on survival of 2, 4-degrading bacteria in environmental samples, strains Pseudomonas cepacia/pJP4, Alcaligenes JMP228/pJP4, P. cepacia/p712, and Alcaligenes JMP228/p712 were separately inoculated into samples of field soil, paddy soil, lake water, and river water, and then the changes of their populations were measured. The strains used contained a 2, 4-D degradative plasmid, either pJP4 conferring fast-growing property to the host or p712 conferring slow-growing property, and were resistant to antibiotics such that the inoculated strains could be enumerated against the indigenous microbial populations. In sterile environmental samples, these strains were stably maintained at the levels used for inoculation, except in sterile paddy soil where Alcaligenes JMP228 strains died drapidly. In natural soil samples for four strains declined steadily with time, but in naturla water samples their polulations fell rapidly at the early phase and then remained almost constant. When the environmentla samples were treated with 2, 4-D, P. cepacia/pJP4 and P. cepacia/p712 maintained significant numbers, while Alcaligenes JMP228/pJP4 and Alcaligenes JMP228/p712 declined significantly in most of the samples. The results indicated that the survivability of genetically modified microorganisms could vary depending on the environments and that their abundance in the environments under s2, 4-D selection was markedly influenced by the nature of the 2, 4-D degradative plasmid as well as type of the host strain.

  • PDF

금정산성 주변 식생의 생태적 특성과 복원방안 (Restoration Plan and Ecological Characteristics of Vegetation in the Area Adjacent to GeumJeong Mountain Fortress)

  • 김석규
    • 환경영향평가
    • /
    • 제19권3호
    • /
    • pp.231-245
    • /
    • 2010
  • The the purpose of this study was to analyze of the vegetation structure and phytosociological changes in the area adjacent to GeumJeong Mountain Fortress for fifteen years. The result of this study was as follows; Of the 8 quadrates, site of the North Gate 2 was having a highest in the number of extinct trees, 15 kinds. This is probably due to trampling effect caused by climbers' steps. Site of the West Gate 1 and South gate 1 each had 8 kinds of extinct trees, respectively. The number of newly appeared trees was highest at site of the North Gate 1, (8 kinds) followed by the sites of South gate 1 and South gate 2, respectively (5 kinds). The highest decrease in number of tree species was observed in North Gate 1, therefore, there is a strong relationship between vegetation diversity and the number of users of the available spaces. In order to revitalize the unstable vegetation structure of the Area Adjacent to GeumJeong Mountain Fortress, Robinia pseudo-acacia has to be well maintained in the shrub tree layer, and vines, such as Smilax china, Humulus japonicus, and Pueraria thungergiana, should be removed. To recover natural vegetation, dead leaf layer should be protected, and more shrub trees need to be planted. In the understory and shrub tree layer, multi layer tree planting is highly recommended to recover natural vegetation and increase tree diversity. In order to improve bad soil condition caused by trampling effect of recreational users, special treatments to the soil structure are required, such as mulching and raking soil. Also, depending on its soil damage from users trampling, the areas in the park should be divided into usable areas and user limited areas by the sabbatical year system. To improve the soil acidity due to acidic rain, soil buffering ability should be improved by activating microorganisms in the soil by using lime and organic material.

오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향 (Effects of Soil Remediation Methods on the Biological Properties of Soils)

  • 이용민;김국진;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권3호
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권2호
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

인삼포(人參圃) 토양(土壤)의 진균(眞菌) 및 Fusarium속 분포(分布)에 관한 연구 (Studies on the Distribution of Fungal and Fusarium spp. Propagules in Ginseng Field Soil)

  • 신현성;이형환;이민웅
    • 한국균학회지
    • /
    • 제14권2호
    • /
    • pp.109-119
    • /
    • 1986
  • 인삼(人蔘)의 토양병해(土壤病害) 방제에 효율성을 높이고, 증산에 기여 할 수 있는 기초자료를 얻고자 우리나라 주요 인삼 재배지인 금산(錦,山), 풍기(豊基), 괴산(槐山)의 3년근 재작지(再作地)와 초작지(初作地) 토양을 선정하여 이들 토양의 물리화학적 성질과 토양 내 분포한 미생물들 사이에 상호 관련성을 조사하였다. Fusarium속의 월별 분포는 초작지 및 재작지 모두 가을철에 증가하였고, 괴산(槐山)을 제외한 풍기(豊基)와 금산(錦山) 재작지가 이들 동일지역의 초작지 보다 $1.9{\sim}2.6$배 더 많이 분포하였으며, Fusarium속/전 진균의 비도 금산(錦山), 풍기(豊基)의 재작지에서 증가하였다. 전 진균은 대체로 6,7월에 증가되었으나 기온변화에 따른 민감한 증감없이 고루 분포되었고 표층부에 많이 분포하였다. 유기물과 인산의 함량은 초작지에서 많았고, 인산/유기물량의 비, Mg/유기물량의 비, Mg함량 등은 재작지에서 많은 경향이 있다. 토양의 pH는 $4.5{\sim}5.7$로 모두가 약 산성 토양이었다. 토양의 수분량은 겨울철에 증가 되었으며 생육기간에 수분량은 큰 차이가 없고, 평균적으로 초작지는 24.6%, 재작지는 19.5%였다. 토양의 온도는 $7{\sim}8$월이 높았고, $1{\sim}2$월은 가장 낮았다.

  • PDF

Influence of Mucor mucedo immobilized to corncob in remediation of pyrene contaminated agricultural soil

  • Hou, Wei;Zhang, Le;Li, Xiaojun;Gong, Zongqiang;Yang, Yongwei;Li, Zhi
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.149-154
    • /
    • 2015
  • In recent years, immobilization agents were introduced into organic contaminated soil remediation and more and more materials were screened and used as the immobilizing carrier. However, effect of the decomposition of the immobilizing carrier on the bioremediation was rarely concerned. Therefore, the decomposition experiment of immobilizing carrier -corncob was carried out in the lab with the efficient degradation fungi - Mucor mucedo (MU) existing, and polycyclic aromatic hydrocarbons (PAHs) residues E4/E6 of the dissolved organic matter and microbial diversity during the decomposition process were studied. The results showed that: a) during the decomposition, the degradation of pyrene (Pyr) was mainly in the first 28 d in which the content of extractable Pyr decreased rapidly and the highest decrease was in the treatment with only MU added. b) Anslysis of E4/E6 changes showed that rich microorganisms could promote aromatization and condensation of humus. c) From the diversity index analysis it can also be seen that there is no significant difference in effects of PAHs on the uniformity of microorganisms. These results will not only be useful to have a better understanding of the bioavailability of contaminants adsorbed to biodegradable carriers in PAHs contaminated soil remediation, but also be helpful to perfect the principle of immobilized microbial technique.

Effects of Soil-Plant Interactive System on Response to Exposure to ZnO Nanoparticles

  • Lee, Sooyeon;Kim, Saeyeon;Kim, Sunghyun;Lee, Insook
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1264-1270
    • /
    • 2012
  • The ecotoxicological effects of nanomaterials on animal, plant, and soil microorganisms have been widely investigated; however, the nanotoxic effects of plant-soil interactive systems are still largely unknown. In the present study, the effects of ZnO nanoparticles (NPs) on the soil-plant interactive system were estimated. The growth of plant seedlings in the presence of different concentrations of ZnO NPs within microcosm soil (M) and natural soil (NS) was compared. Changes in dehydrogenase activity (DHA) and soil bacterial community diversity were estimated based on the microcosm with plants (M+P) and microcosm without plants (M-P) in different concentrations of ZnO NPs treatment. The shoot growth of M+P and NS+P was significantly inhibited by 24% and 31.5% relative to the control at a ZnO NPs concentration of 1,000 mg/kg. The DHA levels decreased following increased ZnO NPs concentration. Specifically, these levels were significantly reduced from 100 mg/kg in M-P and only 1,000 mg/kg in M+P. Different clustering groups of M+P and M-P were observed in the principal component analysis (PCA). Therefore, the M-P's soil bacterial population may have more toxic effects at a high dose of ZnO NPs than M+P's. The plant and activation of soil bacteria in the M+P may have a less toxic interactive effect on each of the soil bacterial populations and plant growth by the ZnO NPs attachment or absorption of plant roots surface. The soil-plant interactive system might help decrease the toxic effects of ZnO NPs on the rhizobacteria population.

온도변화에 기인한 토양세균 우점종의 변화에 관한 연구 II (Dominant-strains Variation of Soil Microbes by Temperate Change II)

  • 박갑주;이병철;김수영;박찬선;조명환
    • 환경생물
    • /
    • 제29권3호
    • /
    • pp.195-201
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizobacteria, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following strains: Pinus densiflora, Pinus koraiensis, Quercus acutissima. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 24 strains of Bacillus, 6 Paenibacillus strains, 1 Pseudomonas strains. Among these genera, the dominant strains in Pinus densiflora was discovered in the same genus. Additionally, those of Pinus koraiensis and Quercus acutissima changed in both genus and strains which changed into the Bacillus genus from the Paenibacillus genus at $33^{\circ}C$.

Molecular and Cultivation-Based Characterization of Bacterial Community Structure in Rice Field Soil

  • KIM MI-SOON;AHN JAE-HYUNG;JUNG MEE-KUM;YU JI-HYEON;JOO DONGHUN;KIM MIN-CHEOL;SHIN HYE-CHUL;KIM TAESUNG;RYU TAE-HUN;KWEON SOON-JONG;KIM TAESAN;KIM DONG-HERN;KA JONG-OK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1087-1093
    • /
    • 2005
  • The population diversity and seasonal changes of bacterial communities in rice soils were monitored using both culture-dependent approaches and molecular methods. The rice field plot consisted of twelve subplots planted with two genetically-modified (GM) rice and two non-GM rice plants in three replicates. The DGGE analysis revealed that the bacterial community structures of the twelve subplot soils were quite similar to each other in a given month, indicating that there were no significant differences in the structure of the soil microbial populations between GM rice and non-GM rice during the experiment. However, the DGGE profiles of June soil after a sudden flooding were quite different from those of the other months. The June profiles exhibited a few intense DNA bands, compared with the others, indicating that flooding of rice field stimulated selective growth of some indigenous microorganisms. Phylogenetic analysis of l6S rDNA sequences from cultivated isolates showed that, while the isolates obtained from April soil before flooding were relatively evenly distributed among diverse genera such as Arthrobacter, Streptomyces, Terrabacter, and Bacillus/Paenibacillus, those from June soil after flooding mostly belonged to the Arthrobacter species. Phylogenetic analysis of 16S rDNA sequences obtained from the soil by cloning showed that April, August, and October had more diverse microorganisms than June. The results of this study indicated that flooding of rice fields gave a significant impact on the indigenous microbial community structure; however, the initial structure was gradually recovered over time after a sudden flooding.