Browse > Article
http://dx.doi.org/10.4014/jmb.1203.03004

Effects of Soil-Plant Interactive System on Response to Exposure to ZnO Nanoparticles  

Lee, Sooyeon (Division of EcoScience, Ewha Womans University)
Kim, Saeyeon (Division of EcoScience, Ewha Womans University)
Kim, Sunghyun (School of Civil and Environmental Engineering, Yonsei University)
Lee, Insook (Division of EcoScience, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.9, 2012 , pp. 1264-1270 More about this Journal
Abstract
The ecotoxicological effects of nanomaterials on animal, plant, and soil microorganisms have been widely investigated; however, the nanotoxic effects of plant-soil interactive systems are still largely unknown. In the present study, the effects of ZnO nanoparticles (NPs) on the soil-plant interactive system were estimated. The growth of plant seedlings in the presence of different concentrations of ZnO NPs within microcosm soil (M) and natural soil (NS) was compared. Changes in dehydrogenase activity (DHA) and soil bacterial community diversity were estimated based on the microcosm with plants (M+P) and microcosm without plants (M-P) in different concentrations of ZnO NPs treatment. The shoot growth of M+P and NS+P was significantly inhibited by 24% and 31.5% relative to the control at a ZnO NPs concentration of 1,000 mg/kg. The DHA levels decreased following increased ZnO NPs concentration. Specifically, these levels were significantly reduced from 100 mg/kg in M-P and only 1,000 mg/kg in M+P. Different clustering groups of M+P and M-P were observed in the principal component analysis (PCA). Therefore, the M-P's soil bacterial population may have more toxic effects at a high dose of ZnO NPs than M+P's. The plant and activation of soil bacteria in the M+P may have a less toxic interactive effect on each of the soil bacterial populations and plant growth by the ZnO NPs attachment or absorption of plant roots surface. The soil-plant interactive system might help decrease the toxic effects of ZnO NPs on the rhizobacteria population.
Keywords
Microcosm; T-RFLP; bacterial community; ZnO nanoparticles; PCA;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Brunner, T. J., P. Wicker, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruninik, and W. J. Stark 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40: 4374-4381.   DOI   ScienceOn
2 Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21: 1116-1170.   DOI   ScienceOn
3 de Lipthay, J. R., K. Johnsen, H. J. Albrechtsen, P. Rosenberg, and J. Aamand. 2004. Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations. FEMS Microbiol. Ecol. 49: 59-69.   DOI   ScienceOn
4 Ge, Y., J. P. Schimel, and P. A. Holden. 2011. Evidence for negative effects of $TiO_2$ and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45: 1659-1664.   DOI   ScienceOn
5 Griffiths, B. S., K. Ritz, N. Ebblewhite, and G. Dobson. 1999. Microbial community dynamics associated with rhizosphere carbon flow. Soil Biol. Biochem. 31: 145-153.
6 Gottschalk, F., T. Sonderer, R. W. Scolz, and B. Nowack. 2009. Modelled environmental concentrations of engineered nanomaterials ($TiO_2$, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43: 9216-9222.   DOI   ScienceOn
7 Huang, Z., X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, and B. Hao. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24: 4140-4144.   DOI   ScienceOn
8 Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, et al. 2008. Nanomaterials in the environment: Behaviour, fate, bioavailability, and effects. Environ. Sci. Technol. 27: 1825-1851.
9 Kim, S., S. Y. Lee, and I. S. Lee 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Wat. Air Soil Pollut. DOI: 10.1007/s11270-011-1067-3.
10 Kumar, N., V. Shah, and V. K. Walker. 2011. Influence of nanoparticle mixture on an arctic soil community. Nanomat. Environ. 31: 131-135.
11 Lee, W. M., Y. J. An, H. Yoon, and H. S. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiates) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27: 1915-1921.   DOI   ScienceOn
12 Lee, C. W., S. Mahendera, K. Zodrow, D. Li, Y. C. Tsai, J. Braam, and P. J. J Alvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29: 669-675.   DOI   ScienceOn
13 Mishra, V. K. and A. Kumar. 2009. Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig. J. Nanomat. Biostruc. 4: 587-592.
14 Lin, D. and B. Xing. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 20: 1-8.
15 Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
16 Manzo, S., A. Rocco, R. Carotenuto, F. de Luca Picione, M. L. Miglietta, G. Rametta, and G. D. Francia. 2011. Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms. Environ. Sci. Pollut. Res. 18: 756-763.   DOI   ScienceOn
17 Nannipieri, P., E. Kandeler, and P. Ruggiero. 2002. Enzyme activities and microbiological and biochemical processes in soil, pp. 1-33. In R. G. Burns and R. P. Dick (eds.). Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker, NY.
18 Neal, A. L. 2008. What can be inferred from bacteriumnanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371.   DOI   ScienceOn
19 Nel, A., T. Xia, L. Moedler, and N. Li. 2006. Toxic potential of materials at nanolevel. Science 311: 622-627.   DOI   ScienceOn
20 Puglisi, E., A. A. M. Del Re, M. A. Rao, and L. Gianfreda. 2006. Development and validation of numerical indexes integrating enzyme activites of soils. Soil Biol. Biochem. 38: 1673-1681.   DOI   ScienceOn
21 Roco, M. C. 2003. Nanotechnology: Convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14: 337-346.   DOI   ScienceOn
22 Tabatabai, M. A. 1982. Agronomy monograph, pp. 903-904. In A. L. Page (ed.). Soil Enzymes. In: Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, WI.
23 Service, R. F. 2008. Science policy: Report faults U.S. strategy for nanotoxicology research. Science 322: 1779.
24 Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
25 Sukul, P. 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxy residues. Soil Biol. Biochem. 38: 320-326.   DOI   ScienceOn
26 Tong, Z., M. Bischoff, L. Nies, B. Applegate, and R. F. Turco. 2007. Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 41: 2985-2991.   DOI   ScienceOn
27 USEPA. 2007. Nanotechnology white paper. 100/B-07/001. http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf.
28 Xue, D., H. Y. Yao, Y. Ge De, and C. Y. Huang. 2008. Soil microbial community structure in diverse land use systems: A comparative study using biology, DGGE, and PLFA analyses. Pedosphere 18: 653-663.   DOI   ScienceOn
29 Zhang, L., Y. Jiang, Y. Ding, M. Povey, and D. York. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9: 479-489.   DOI   ScienceOn
30 Zhu, H., J. Han, J. O. Xizo, and Y. Jin. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10: 713-717.   DOI   ScienceOn