• Title/Summary/Keyword: change of coastal area

Search Result 486, Processing Time 0.026 seconds

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Sensitivity Analysis and Parameter Evaluation of a Distributed Model for Rainfall-Runoff-Soil Erosion-Sediment Transport Modeling in the Naesung Stream Watershed (내성천 유역의 강우-유출-토양침식-유사이송 모의를 위한 분포형 모형의 민감도 분석 및 매개변수 평가)

  • Jeong, Won Jun;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1121-1134
    • /
    • 2014
  • The distributed watershed model of rainfall-runoff-soil erosion-sedimen transport was constructed for the Naesung Stream Watershed with high potentiality and risk of sediments produced by soil erosion. The sensitivity analyses of roughness coefficient and hydraulic conductivity which affected the modeling results of runoff and sediment concentration were performed in this study. As a result, the change of the roughness coefficient for the forest area from 0.4 to 0.45 did not affect the change in runoff and stream discharge and the average value and range of sediment concentration were also insignificantly increased with few difference. As a result of the sensitivity analysis of the hydraulic conductivity, the total amount of runoff and maximum runoff were gradually increased as the hydraulic conductivity was reduced. In the case of sediment concentration modeling, the average and the range of sediment concentration for all stations were increased as the hydraulic conductivity was decreased. For the Hyangseok Station, in case of the hydraulic conductivity reduced by 50%, the simulation result of sediment concentration was most similar to the estimated value by the sediment rating curve.

An Experimental Study of Sediment Transport Patterns behind Offshore Structure (외해 구조물 배후의 표사이동에 관한 실험적 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Recently, securing a vast land in the land region becomes more difficult and efforts to seek its alternation in the sea area have been increased. As a consequence, the coastal region has been faced to extensive beach erosion problems. In planning offshore structures such as artificial islands, it is necessary to forecast the influence of the structure construction exerting on the beach erosion of the adjacent coast. In the present study, the sediment movement pattern behind offshore structure was examined through a series of three dimensional movable bed experiments, so as to develop the numerical model which forecasts morphological change including beach erosions. The experimental results reveal that the sediment movement patterns of the beach line side and the depth region are separated at a certain boundary line. In details, at the beach side including swash zone the sediment movement becomes dominant, which is governed by a relation between depth contours and incident wave directions, while at the depth region the bed load and suspended load due to the orbit motion of waves are carried by nearshore currents, and both movements are clearly separated at a specified boundary that is related to partial standing wave from the beach. It is expected that these results can be effectively used for verification of a numerical model on morphological change of the coast.

  • PDF

Future Projections on Subtropical Climate Regions over South Korea Using SRES A1B Data (A1B 시나리오 자료를 이용한 우리나라 아열대 기후구 전망)

  • Kwon, Young-Ah;Kwon, Won-Tae;Boo, Kyung-On;Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.355-367
    • /
    • 2007
  • As the global warming has been influenced on various sectors including agriculture, fisheries and health, it is essential to project more accurate future climate for an assessment of climate change impact and adaptation strategy. The purpose of this study is to examine the boundary changes in the subtropical climate region in South Korea using observed 30-year(1971-2000) data and projected 100-year data based on the IPCC SRES A1B emission scenario. We have selected Trewartha's climate classification among various climate classification, defining the subtropical climate region as the region with monthly mean temperature $10^{\circ}C$ or higher during 8-12 months. By observed data, the subtropical climate region was only limited in Jeju-do and the farmost southern coastal area(Busan, Tongyeong, Geoje, Yeosu, Wando, Mokpo) of South Korea. The future projected climate region for the period of 2071-2100 included have shown that subtropical climate region extended to most of stations except for the ares of Taebaeksan and Sobaeksan Mountains.

Characteristics of Salt Tolerance in Tree Species(I) - Relationship between Tree Species Distribution and Soil Salt Concentration in East Coastal Forest - (수종간(樹種間)의 내염력(耐塩力) 특성(特性)에 관(關)한 연구(硏究)(I) - 동해안림(東海岸林)의 수종분포(樹種分布)와 염분농도(塩分濃度)와의 관계(關係) -)

  • Choi, Moon Gil
    • Journal of Korean Society of Forest Science
    • /
    • v.73 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • Relationship between distribution of tree species and salt concentration in soil was studied in order to understand the salt tolerance of tree species in the middle part of Korean east coast and its results were as follows; 1) The tree species in the area mostly consist of Pinus thunbergii, Pinus densiflora, Rosa rugosa, Lespedeza bicolor, Amorpha fruticosa, Quercus dentata, Rhododendron mucronulatum, Rohinia pseudoacacia and others. 2) Pinus thunbergii was dominant species and Rosa rugosa gradually disappeared at the distance from the beach line to 200 meters toward inland. Pinus thunbergii tended to disappear gradually and Pinus densiflora was dominant at the distance from 200 meters to 300 meters inland. 3) Pinus thunbergii was dominant below 50 meters in altitude while Pinus densiflora was dominant above 50 meters. 4) NaCl content tended to decrease as proceeding to inland, higher altitude and to shallow depth of soil. 5) Change in pH in terms of distance toward inland and altitude was not significant, but change in pH along soil depth was conspicuously decreasing from pH 7.0 of top soil to pH 6.5 50cm below. 6) Pinus thunbergii was densely distributed to the area where soil NaCl content was higher than 100 vpm, while Pinus densiflora dominated the area of less than 100 vpm. Rosa rugosa was shown to dominate the area of over 100 vpm soil NaCl content. 7) NaCl content in tree tended to decrease, as proceeding to inland, rapidly within 150 meters distance from the beach line and gradually at further distances. NaCl content in leaf was about 600 ppm, branch 350ppm and root 250 ppm.

  • PDF

Changes of Tissue N Content and Community Structure of Macroalgae on Intertidal Rocky Shores in Tongyeong Area due to Sewage Discharge (통영 지역의 암반 조간대에서 배출수 유입으로 인한 해조 군집 구조와 엽체 내 질소 함량의 변화)

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Lee, Jin-Ae;Chung, Ik-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.276-283
    • /
    • 2009
  • Enrichment in nutrients coming from urban sewage outfalls can lead to eutrophication in coastal areas, which can also change the species composition and community structure of macro algal communities. We investigated the structure of the macro algal community within three rocky shores in order to assess any possible differences in their characteristics. Site 1 was located near Tongyeong city's sewage outfall, Site 2 was located near a public beach area, and Site 3 faced open channel of the Ocean. All three sites were located within the same stretch of the coast, where Site 2 was located between sites 1 and 3. We measured the nutrient concentration in water and the tissue nitrogen content in macro algae samples. Nutrients in the water column surrounding site 1 were high in ammonium ($30.2\pm1.8{\mu}M$), nitrate ($26.2{\pm}0.1{\mu}M$), and phosphate ($2.7{\pm}0.1{\mu}M$) content, and were characterized by low numbers of macroalgal species and species and a low species diversity index. In contrast, site 3 exhibited relatively low nutrient concentration levels and a high number of macroalgal species and a high species diversity index. Comparative analysis showed that the tissue nitrogen content of macroalgae were significantly (P<0.05) affected by the nutrient concentration in the water column. The tissue nitrogen content of green algae within site 1 was higher than the others sites. However, the tissue nitrogen content of brown algae was similar at all three sites. Thus, the tissue nitrogen content of macro algae and the macro algal community structure of intertidal rocky shores were dependent on location and the performance of macroalgal communities was dependent on water quality.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

Proposal for the groundwater based countermeasures to secure water resources considering regional characteristics of water resources vulnerable areas (국내 수자원 이용 취약지역의 지역 특성을 고려한 지하수 기반 수자원 확보 방안 제시)

  • Kim, Geon;Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.191-203
    • /
    • 2022
  • This study is a follow-up study of vulnerable areas according to the vulnerability assessment of groundwater resource management in Korea. In this study, an optimal operation plan for groundwater resource management was proposed for areas vulnerable to groundwater resource management in Korea derived from previous studies. Prior to presenting the optimal operation plan for groundwater resource management, this study grasped the current status of changes in groundwater level and seawater penetration area for vulnerable areas using MODFLOW, a groundwater flow analysis program. As a result of the analysis using basic data for 10 years from 2009 to 2018, the groundwater level fell and the sea infiltration area increased. The final purpose of this study, the optimal operation plan for groundwater resource management, was selected as a total of four alternatives that can be expected to have positive effects to increase groundwater level and reduce seawater penetration. As a result of analyzing the amount of change in groundwater level and seawater penetration by applying the selected optimal operation plan, positive effects were found in all methods. It is expected that the optimal operation plan for groundwater resource management proposed in this study will be applied not only to vulnerable areas of groundwater resources in Korea but also to areas requiring development to establish efficient groundwater resource management measures.

Changes of Surface $M_2$ Currents as Observed by HF Radar Before and After Saemangeum Fourth Tidal Dyke Closing (새만금 4호 방조제 완성 전.후 HF 레이다로 관측된 표층 $M_2$ 조류의 변화)

  • Kim Chang-Soo;Lee Sang-Ho;Son Young-Tae;Kwon Hyo-Keun;Lee Kwang-Hee;Kim Young-Bae;Jeong Ou-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.37-48
    • /
    • 2006
  • HF radar-derived current data obtained in 2002 and 2004 are analyzed to examine the effects of the completion of the Saemangeum 4th tidal dyke in June 2003, connecting Gogunsan-Gundo and Bieung-Do, on the coastal surface $M_2$ current pattern. Comparison between the currents by HF radar and current meter mooring showed good agreements. Counterclockwise rotation of the $M_2$ current in the observed area did not change with the dyke construction. Strong westward ebb jet from the gap of the dyke was observed in 2002 but disappeared in 2004. The complete closing of the dyke gap caused the current speed increase around the mouth of the Kem River estuary, decrease around Gogunsan-Gundo and the dyke, the changes in the direction of maximum current to north-ward from eastward and the delay of the maximum flood current occurrence around Gogunsan-Gundo and the dyke. Around Yeon-Do, the maximum flood current directed more clockwise and occurred rather earlier. These changes of the $M_2$ current ellipse characteristics imply that the effects of the dyke construction reached the area connecting Mal-Do and Yeun-Do.

Sedimentologic Linkage of depositional environments of Han River and Kyunggi Bay, Korea (한강 유역과 경기만 퇴적환경의 연계성)

  • 오재경;방기영
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • In order to understand the relationship of depositional environment between fluvial and estuarine-embayment in Han River system, including depositional change in main Han River, more than 250 bottom sediment and 70 suspended sediment were analyzed with hydrologic data. Based on the previous data, the study area can be divided into two environment(fluvial and estuarine-embayment) by Singok underwater dam. The gravelly facies occurs in the South and North Han Rivers and sandy and silty facies occupies in the main Han River. Depositional environment of main Han River changed mainly because of limited sediment transport and hydrological condition. In the estuarine-embayment environment, coarse-grained sediments are dominant in tidal channel and of shore whereas fine and poorly sorted sediments are observed in coastal area. During moderate period, relationship between fluvial-estuarine-embayment system is discontinuou s because of flow restriction by artificial construction such as dam and underwater dam, so that each river system characterizes the individual environment. Fluvial and estuarine system is influenced by tide and, thus, transition zone of estuarine- embayment system moves landward. During flooding period, however, each river system is integrated as continuous depositional system by high discharge and, thus, transition zone of fluvial-estuarine-embayment system moves seaward. For further detailed systems about the lower Singok under-water dam, joint research of South-North Korea should be necessary.