• Title/Summary/Keyword: chamber pressure

Search Result 2,138, Processing Time 0.039 seconds

Fabrication of SmBCO coated conductor using $CeO_2$ single buffer layer ($CeO_2$ 단일 완충층을 이용한 SmBCO 초전도테이프 제조)

  • Kim, T.H.;Kim, H.S.;Oh, S.S.;Yang, J.S.;Ko, R.K.;Ha, D.W.;Song, K.J.;Ha, H.S.;Jung, K.D.;Pa, K.C.;Cho, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.261-262
    • /
    • 2006
  • High temperature superconducting coated conductor has multi-layer structure of protecting layer/superconducting layer/buffer layer/metallic substrate. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is $CeO_2$(cap layer)/YSZ(diffusion barrier layer)/$CeO_2$(seed layer). Multi-buffer layer deposition required many times and process. Therefore single buffer layer deposition study reduce 2G HTS manufacture efforts. Evaporation technique for single buffer deposition method is used for the $CeO_2$ layer. $CeO_2$ single buffer film could be achieved in the chamber. Detailed deposition conditions (temperature and partial gas pressure of deposition) were investigated for the rapid growth of high quality $CeO_2$ single buffer film.

  • PDF

Characterizations of Oxide Film Grown by $NH_3/O_2$ Oxidation Method ($NH_3/O_2$산화법으로 성장한 산화막의 특성평가)

    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.82-87
    • /
    • 1998
  • In the oxidation process of the $NH_3/O_2$ oxidation method, adding $NH_3$ gas to $O_2$ gas, the detected outlet gases in the reaction quartz chamber are N2, $O_2$ and $H_2O$ and in addition, a very small quantity of $CO_2$, NO and $NO_2$ are detected. Two kinds of species ($O_2$ and H2O) contribute to oxidation, so the growth rate is determined by oxidation temperature and by also partial pressure of the NH3 and $O_2$ gases. The slop of growth rate is identified to be medial and in parallel between that of the dry and wet oxidation. Auger electron spectroscopy (AES) indicates that $NH_3/O_2$ oxide film has a certain stoichiomerty of $SiO_2$, this oxidation method restrains the generation of defects in the $SiO_2/Si$ interface, minimizing fixed charges. The breakdown voltage of $NH_3/O_2$ oxide film (470$\AA$) is 57.5 volts, and the profile of the C-V curve including flat band voltage (0.29 volts) agree with the ideal curve.

  • PDF

Reactive Ion Etching of InP Using $CH_4/H_2$ Inductively Coupled Plasma ($CH_4/H_2$유도결합 플라즈마를 이용한 InP의 건식 식각에 관한 연구)

  • 박철희;이병택;김호성
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.161-168
    • /
    • 1998
  • Reactive ion etching process for InGaAs/InP using the CH4/H2 high density inductively coupled plasma was investigated. The experimental design method proposed by Taguchi was utilized to cover the whole parameter range while maintaining reasonable number of actual experiments. Results showed that the ICP power mainly affects surface roughness and verticality of the sidewall, bias power does etch rate and verticality, CH4 gas concentraion does the verticality and etch rate, and the distance between the induction coil and specimen mostly affects the surface roughness. It was also observed that the chamber pressure is the dominant parameter for the etch rate and verticality of the sidewall. The optimum condition was ICP power 700W, bias power 150 W, 15% $CH_4$, 7.5 mTorr, and 14 cm distance, resulting in about 3 $\mu\textrm{m}$/hr etch rate with smooth surfaces and vertical mesa sidewalls.

  • PDF

Bias effect for diamond films deposited by HFCVD method (HFCVD 방법을 이용한 다이아몬드 박막 증착에서의 Bias 효과)

  • 권민철;박홍준;최병구
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.94-103
    • /
    • 1998
  • We investigated a bias effect for diamond films deposited by a HFCVD(Hot Filament Chemical Vapor Deposition) method using a methane-hydrogen gas mixture. During deposition total chamber pressure, methane concentration, filament temperature and substrate temperature was 20 torr, 1.0%, $2100^{\circ}C$ and $980^{\circ}C$ respectively. Also DC bias was applied during both the nucleation stage and the growth stage systematically. We found that negative bias enhanced the nucleation density at the nucleation stage, but it made a bad influence on the morpholohy of films at the growth stage. Positive bias enhanced the growth rate and resulted in a good morpholohy of films. Therefore we concluded that it was effective to apply the negative bias during the nucleation stage and then to switch into the positive bias during the growth stage in the fabrication of diamond films.

  • PDF

Pin-to-plate DBD system을 이용하여 HMDS/$O_2$ 유량 변화에 따라 증착된 $SiO_2$ 박막 특성 분석

  • ;Park, Jae-Beom;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.447-447
    • /
    • 2010
  • 일찍이 $SiO_2$ (Silicon dioxide) 박막은 다양한 분야에서 유전층, 부식 방지층, passivation층 등의 역할을 해왔다. 그리고 이러한 박막 공정은 대부분 진공의 환경에서 그 공정이 이루어지고 있다. 하지만 이러한 진공 system은 chamber, loadlock 그리고 펌프 등의 다양한 진공장비로 인한 생산 비용 증가, 공정의 복잡성뿐만 아니라 공정의 대면적화에 어려움을 지니고 있다. 그리고 최근 flexible display의 제조 공정에서 polymer 혹은 plastic 기판을 제조 공정에 적용시키기 위해 저온 공정이 필수적으로 요구 되고 있다. 이러한 기술적 한계를 뛰어 넘기 위해 최근 많은 연구가들은 atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD)에 대해 지속적으로 다양한 연구를 하고 있다. 본 연구에서는 remote-type의 modified pin-to-plate dielectric barrier discharge (DBD) 시스템을 이용한 $SiO_2$ 무기 박막 증착에 관해 연구하였다. $O_2$/He/Ar의 gas와 5 kV AC power (30 kHz)의 전원장치를 통해 고밀도 대기압 플라즈마를 발생시켰고, silicon precursor로는 hexamethyldisilazane (HMSD)를 사용하였다. 먼저 HMDS와 $O_2$ gas의 flow rate 변화에 따른 증착률을 조사하였고 그 다음으로 박막의 조성 및 표면 특성을 조사하였다. HMDS의 유량이 100 ~ 300 sccm으로 증가함에 따라 증착속도는 증가했다. 하지만 FT-IR을 통해 HMDS의 유량이 증가하면 반응에 참여할 산소 분자의 부족으로 인해 $-(CH_3)_X$의 peak intensity가 증가하고, -OH의 peak intensity가 점차 감소함을 관찰 할 수 있었다. 또한 증착된 박막의 표면에 particle과 불균일한 surface morphology 등을 SEM image를 통해 관찰 하였다. 산소 유량이 탄소와 관련된 많은 불순물들의 제거에 도움이 됨에도 불구하고 14 slm 이상의 산소가 반응기 내로 주입되게 되면 대기압 플라즈마의 discharge가 불안정하게 되어 공정효율을 저하시키는 요소가 되었다. 결과적으로 HMDS (150 sccm)/$O_2$ (14 slm)/He (5 slm)/Ar (3 slm)의 조건에서 약 42.7 nm/min 증착률을 가지며, 불순물이 적고 surface morphology가 깨끗한 $SiO_2$ 박막을 증착할 수 있었다.

  • PDF

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF

Crystal Structure of $\textrm{ZrV}_{x}\textrm{Mn}_{1-x-y}\textrm{Ni}_{1+y}$ Laves Phase Alloys for MH Battery Application (MH전지용 $\textrm{ZrV}_{x}\textrm{Mn}_{1-x-y}\textrm{Ni}_{1+y}$ Laves합금의 결정구조)

  • Kim, Won-Baek;Seo, Chang-Yeol;Choe, Guk-Seon;Kim, In-Gon
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.234-243
    • /
    • 1997
  • The crystal structure of arc melted $ZrV_{x}Mn_{1-x}Ni_{1.0},\;ZrV_{x}Mn_{0.8-x}Ni_{1.2},\;ZrV_{x}Mn_{0.6-x}Ni_{1.4}$ alloys which are known to have AB2 type Laves structure was investigated. They had mixed phases of C14 and C15. The radius ratio ($r_{A}/r_{B}$) of atoms in A site to that of B site was found to be an important parameter in explaining the omposition dependence of the crystal structure The C15 structure showed a linear increase with the ratio in as-cast conditions. However, the annealed alloys revealed a definite ratio at which the stability of both phases are divided distinctly. The composition of the alloys could be closely controlled by maintaining the argon pressure in the chamber over 1 arm during arc melting. In contrast, the alloy ingot melted in VIM showed a significant loss of hln.

  • PDF

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.