• Title/Summary/Keyword: chained form mobile robot

Search Result 3, Processing Time 0.025 seconds

Kinematic Modeling of Chained Form Mobile Robot

  • Han, Jae-Yong;Lee, Jae-Hoon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2057-2062
    • /
    • 2003
  • Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.

  • PDF

Robust Sliding Mode Control for Path Tracking of Intelligent Mobile Robot

  • Jiangzhou, L-U;Xie Ming
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.1-109
    • /
    • 2001
  • This paper deals with the path following problem of car-like intelligent mobile robot. A robust sliding mode control law based on time-varying state feedback is performed via Lyapunov method for path tracking of nonholonomic mobile robot with uncertainties. At first, A sliding control law is designed by combing the natural algebraic structure of the chained form system with ideas from sliding mode theory. Then, a robust control law is proposed to impose robustness against bounded uncertainties in path tracking. The problem of estimating the asymptotic stability region and the sliding domain of uncertain sliding mode system with bounded control input is also discussed. The proposed sliding mode control law can ensure the global reaching condition of the uncertain control system.

  • PDF

Formation-Keeping of Multiple Robots using Chained-Poles (연결극점을 이용한 다중로봇의 대형유지)

  • Kwak, Jae-Hyuk;Kang, Hyun-Deok;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.218-224
    • /
    • 2009
  • We propose a formation-keeping and changing methods for outdoor multiple mobile robots in chained form. Our proposed method is designed to maintain the follower to its desired distance and orientation with respect to the pole using the concept of virtual force such as potential field. The client robots use a behavior-based control to perform kinematic control to keep formation under the centralized system in our software framework. The relationship of each poles that is expressed by set of distance and angle is the description of the formation type and the type converting is performed using this set. In addition, we also examine the stability and capability in the simulation and experiments with real robots.

  • PDF