We focus on open-domain question-answering tasks that involve a chain-of-reasoning, which are primarily implemented using large language models. With an emphasis on cost-effectiveness, we designed EffiChainQA, an architecture centered on the use of small language models. We employed a retrieval-based language model to address the limitations of large language models, such as the hallucination issue and the lack of updated knowledge. To enhance reasoning capabilities, we introduced a question decomposer that leverages a generative language model and serves as a key component in the chain-of-reasoning process. To generate training data for our question decomposer, we leveraged ChatGPT, which is known for its data augmentation ability. Comprehensive experiments were conducted using the HotpotQA dataset. Our method outperformed several established approaches, including the Chain-of-Thoughts approach, which is based on large language models. Moreover, our results are on par with those of state-of-the-art Retrieve-then-Read methods that utilize large language models.
Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.
본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.
대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.
This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.
Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.
시장에서 공급자와 고객의 가치창출은 학계와 산업계에서 중요한 비즈니스 전략으로 인식되고 있지만 이 현상에 대한 체계화된 연구가 부족하다. 본 연구에서는 해외 저널 및 국내 저널을 포함한 기존의 문헌에 대한 탐색적 연구 및 귀납적 추리를 바탕으로 가치연구의 발전 동향을 시기별, 주제별로 정리하였고 공급자와 고객의 가치창출 현상의 연구를 위한 자원 및 역량 기반 연구체계를 구축하였다. 가치 연구의 연구동향에 대해 주제별로 살펴본 결과 2004년 이전에는 크게 제품 및 서비스의 가치에 대한 연구와 고객과의 관계가치에 대한 연구로 나눌 수 있었고 2004년 이후 각각은 서비스 지배적 논리 및 관계의 효용, 네트워크 및 공급자 체인상의 관계로 발전하였다. 자원과 역량 기반 관점에서 기존의 문헌들을 연구한 결과 4가지의 자원(재무적 자원, 지식 자원, 효율성 자원, 지적 재산 자원)과 4가지의 역량(관계 역량, 협력 역량, 혁신 역량, 관리 역량)을 도출하였고 이를 기반으로 한 연구체계를 수립하였다.
본 연구에서는 과학 수업에서 학생들이 과학 현상을 근거 있게 설명하고 주장할 수 있도록 인지적 발판이 포함된 과제를 개발하였고, 과제가 소집단 논변 발달에 미치는 영향을 알아보았다. 이를 위해 한 학급에서 이질적인 소집단을 구성한 후, 개발된 과제를 수업중에 활용하였다. 소집단 논변활동에서 학생들은 먼저 각자의 의견을 적고, 서로의 의견을 공유한 후 가장 그럴듯한 의견을 선택하였다. 학생들의 사전 사후 논변 검사지와 논의가 활발하게 일어난 한 소집단의 담화 전사본, 학생들의 반 구조화된 인터뷰, 수업관찰 노트를 통해 과제가 소집단 논변에 미치는 영향을 분석하였다. 개발된 과제는 모순된 논변 예시를 포함하여 학생들이 증거를 가지고 반박할 수 있도록 하였으며, 친구의 생각과 비교하고 설득하는 활동을 통해 소집단 논변이 활발히 이루어지도록 하였다. 그 결과 학생들의 논변 검사 점수가 향상되었으며, 증거와 추론이 포함된 주장을 하였다. 또한 과제를 진행함에 따라 학생들의 논변은 높은 향상 발화의 빈도와 긴 추론 고리의 특성을 보이면서 그 수준이 높아졌다. 학생들은 과제를 수행하면서 제시된 예시 의견에 대해 반성적, 비판적으로 사고하여 타당한 증거와 추론이 포함된 정교한 주장을 하였으며, 자료를 바탕으로 다양한 근거를 제시할 수 있는 과제는 학생들로 하여금 자발적으로 의견을 제시하도록 하여 다양한 참여로 이끌었다. 본 연구는 발달된 소집단 논변 활동의 맥락에 대한 이해와 일반 중학교 과학 탐구수업에서 학생들의 논변 활동을 조력하는 교수 학습 상황에 대한 정보를 제공하였다는 점에서 의의가 있다.
공급사슬관리(SCM)는 공급사슬의 가치를 높이고 변화하는 환경에 더 민첩하게 적응할 수 있는 전략적인 접근방식이다. 공급사슬 파트너 간에 중단 없는 파트너쉽과 가치 창출을 위해서는 정보와 지식의 공유 및 적절한 파트너 선정기준이 적용되어야 한다. 따라서 파트너 선정 기준은 제품의 품질과 신뢰도를 유지하기 위해서 아주 중요하다. 제품의 각 부품은 적절한 공급 파트너를 통해서 공급된다. 파트너를 선정하는 기준은 기술적 능력, 품질, 가격, 지속성 등 여러 요인이 있다. 실제로 파트너 선정기준은 구성부품의 특성에 따라서 변화할 수 있다. 그 부품이 핵심 구성품이면 품질이 가격에 비해서 최고 우선순위가 된다. 표준부품은 낮은 가격이 우선순위를 가진다. 간혹 긴급 주문과 같은 예기치 못한 상황이 발생하면 우선순위가 변하게 된다. 따라서 SCM 파트너 선정 기준은 구성부품의 특성과 상황에 따라서 동적으로 결정 되어진다. 이 연구의 목적은 상황과 부품의 특성에 따라서 공급사슬 파트너쉽을 위한 온톨로지 모델을 제시하고자 하는 것이다. 변수의 불확실성은 퍼지이론을 이용하여 나타내고자 하였다. 부품별 우선순위와 상황변수는 웹 온톨로지 언어(OWL : Web Ontology Language)를 이용하여 모델링 하였다. 부품의 우선순위는 퍼지로직을 이용한 퍼지소속함수로 변환 되어진다. 온톨로지의 추론을 위해서 SWRL(Semantic Web Rule Language)을 이용하였다. 제안된 모델의 구현을 위해서 자동차 구성품인 스타트모터 부품을 대상으로 온톨로지를 구축하고 구성 부품별 우선순위에 따른 공급 파트너를 선정하는 과정을 제시하였다.
개념과 범주는 관찰하지 못한 속성을 추론할 수 있는 기반을 제공한다. 무의미 속성을 사용한 범주기반 속성추론 연구들은 범주 및 속성의 유사성이 추론을 설명하는 핵심 요인이라는 것을 제안했다(Rips, 1975; Osherson et al., 1990). 이후 연구들은 사람들의 사전지식이 범주기반 추론에 막대한 영향을 미치며 심지어 유사성 효과가 완전히 사라지는 경우도 있음을 보고했다. 본 연구는 범주 속성들이 사전지식의 한 종류인 인과적 지식에 의해 사슬구조로 연결되었을 때의 범주기반 속성추론을 검증했으며 그 결과를 예측하는 속성추론모형을 제안했다. 참가자들은 네 개의 속성들이 사슬구조를 이루는 인과적 범주를 학습한 뒤 해당 범주의 다양한 범주 예시들의 숨겨진 속성에 대한 추론을 실시했다. 그 결과 인과적으로 직접 연결된 속성뿐만 아니라 다른 속성 노드에 의해 차폐된 속성들도 추론에 영향을 미치는 비독립성이 나타났다(인과적 마코프 조건의 위배). 인과모형이론(Sloman, 2005)에 기반한 속성추론모형을 적용하여 참가자들의 추론을 모델링한 결과 인과적 연결의 직접 효과뿐만 아니라 간접 효과 즉 인과추론의 비독립성도 예측하는 것으로 나타났다. 다만 간접적으로 연결된 속성들은 인과적 거리와 무관하게 참가자들의 추론평정에 동일하게 영향을 미쳤지만 모형은 거리가 멀어짐에 따라 추론에 미치는 영향이 작아짐을 예측했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.