• 제목/요약/키워드: chain transfer to polymer

검색결과 63건 처리시간 0.024초

폴리벤조옥사졸 전구체의 광투과도 연구 (Optical Transmittance of Polybenzoxazole Precursor)

  • 김대겸;김종화;최길영;오재민;이무영;박동원;이광섭;진문영
    • 폴리머
    • /
    • 제26권1호
    • /
    • pp.18-27
    • /
    • 2002
  • 폴리벤조옥사졸 전구체로써 poly(ο-hydroxyamide)를 2,2'-bis(3-amino-4-hydroxy phenyl)hexafluoropropane과 여러 가지 bis-acid를 사용하여 축중합법에 의해 합성하였으며, 또한 이를 3,4-dihydro-2H-pyran과 부가반응시켜 산민감기인 tetrahydropyran이 부착된 방향족 폴리아미드를 합성하였다. Bis-acid의 구조에 따른 365 nm의 파장에서의 광투과도를 조사한 결과, 4,4'-oxydibenzoic acid로부터 합성된 중합체의 광투과도가 가장 우수하였다. 이러한 현상은 전자받게 성질을 갖고 있는 his-acid에 전자를 공여할 수 있는 구조를 도입하면 전자받게 성질이 감소되어 분자내 전하 이동 착물 (intra-CTC) 형성이 감소됨에 따라 광투과도가 증가된다고 사료된다. 또한 산민감기의 치환율이 높을수록 광투과도가 증가하는 경향을 보였다. 이는 방향족 폴리아미드에 산민감기인 THP의 치환율이 높아질수록 사슬과 사슬간의 조밀함이 떨어지기 때문에 분자간 전하 이동 착물 (inter-CTC) 형성을 줄여주는 효과를 얻게 되어 광투과도가 증가된다고 사료된다.

Photopolymerization of Methyl Methacrylate with p-X-$C_{6}H_{4}SiH_{3}$ (X = F, $CH_3$, $OCH_3$)

  • 우희권;김보혜;조명식;김대영;최영섭;곽영채;함희석;김동표;황택성
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1337-1340
    • /
    • 2001
  • The bulk photopolymerization of methyl methacrylate (MMA) with para-substituted phenylsilanes such as F-C6H4SiH3 (1), H3C-C6H4SiH3 (2), and H3CO-C6H4SiH3 (3) was performed to produce poly(MMA)s containing the respective silyl moiety as an end group. For all the hydrosilanes, the polymerization yields and the polymer molecular weights decreased, whereas the TGA residue yields and the relative intensities of Si-H IR stretching bands increased as the relative silane concentration over MMA increased. The polymerization yields and polymer molecular weights of MMA with 1-3 increased in the order of 3 < 1 < 2. These hydrosilanes influence significantly upon the photopolymerization of MMA as both chain-initiation and chain-transfer agents.

Reversible Addition-Fragmentation Chain Transfer (RAFT) Bulk Polymerization of Styrene: Effect of R-Group Structures of Carboxyl Acid Group Functionalized RAFT Agents

  • Lee Jung Min;Kim Ok Hyung;Shim Sang Eun;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • 제13권3호
    • /
    • pp.236-242
    • /
    • 2005
  • Three dithioester-derived carboxyl acid functionalized RAFT(reversible addition-fragmentation chain transfer) agents, viz. acetic acid dithiobenzoate, butanoic acid dithiobenzoate and 4-toluic acid dithiobenzoate, were used in the RAFT bulk polymerization of styrene, in order to study the effects of the R-group structure on the living nature of the polymerization. By conducting the polymerization with various concentrations of the RAFT agents and at different temperatures, it was found that the R-group structure of the RAFT agents plays an important role in the RAFT polymerization; the bulky structure and radical stabilizing property of the R-group enhances the living nature of the polymerization and allows the polymerization characteristics to be well controlled.

Polypyrrole-Glucose Oxidase 효소전극에 대한 효소 고정화의 정성적 평가 (Qualitative Analyses of Porypyrrole-Glucose Oxidase Enzyme Electrode for Immobilization)

  • 김현철;구할본;사공건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.984-986
    • /
    • 1999
  • In the case of immobilizing of glucose oxidase in organic polymer using electrosynthesis, the glucose oxidase obstructs charge transfer and mass transport during the film growth. This may lead to short chained polymer and make charge-coupling weak between the glucose oxidase and the backbone of the polymer. That is mainly due to insulating property and net chain of the glucose oxidase. Such being the case, it is useless to increase in amount of glucose oxidase more than reasonable in the synthetic solution. We establish by means of qualitative analysis that amount of immobilized glucose oxidase can be improved by adding a hole ethyl alcohol in the synthetic solution. As ethyl alcohol was added by 0.1mol $dm^{-3}$ in the synthetic solution, the faradic impedance of resultant electrode was increased about five times as much as the case of ethyl alcohol free in the solution, and mass transport was limited more than over. That is due to insulating property and net chain of the glucose oxidase. Moreover, in ultraviolet spectra of the synthetic solution, the adsorption peak at 285nm corresponding to glucose oxidase was decreased. It suggests increase in amount of immobilized glucose oxidase.

  • PDF

수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향 (Effect of Nafion Chain Length on Proton Transport as a Binder Material)

  • 강호성;박치훈
    • 멤브레인
    • /
    • 제30권1호
    • /
    • pp.57-65
    • /
    • 2020
  • 본 연구에서는 고분자 전해질막을 구성하고 있는 고분자 주쇄의 반복단위 개수를 변경해 가며 수화채널 모폴로지와 이온전도도의 변화를 비교하였고, 최종적으로 분자동역학 전산모사 수행 시에 적정한 고분자 모델을 선정하기 위한 기준을 제시하고자 하였다. 고분자 주쇄의 길이가 가장 짧은 모델에서 주쇄 및 술폰산기의 움직임이 커지는 것을 관찰할 수 있었지만, 수화채널 모폴로지는 특별한 상관관계를 발견할 수 없었다. 또한, 수화채널 모폴로지에 가장 큰 영향을 받는 수소이온 전달 능력의 특성 상, 수소이온 전도도에서도 고분자 주쇄의 길이와 큰 상관관계를 보이지는 않았다. 이러한 결과는 특히 바인더용 이오노머 제조에 대한 중요한 정보를 제공한다. 일반적으로 바인더용 이오노머의 경우 고분자 전해질막 소재를 저분자량으로 합성하여 사용하게 되는데, 이때 주쇄/술폰산기의 움직임이 향상되므로 촉매층을 잘 둘러싸는 역할을 할 수 있는 반면에, 수소이온 전달 능력 자체에 있어서는 특별한 변화가 없을 것을 예상할 수 있다. 결론적으로, 바인더용 이오노머 제조시에는 수소이온 전달 성능보다는 물성에 좀 더 초점을 맞추어 분자량 및 구조 설계가 필요할 것이다.

카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구 (Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex)

  • 조을룡
    • Elastomers and Composites
    • /
    • 제37권1호
    • /
    • pp.31-38
    • /
    • 2002
  • 카르복실화 스티렌-부타디엔 라텍스의 중합시간은 사용되는 부타디엔 모노머가 공액 이중결합을 가진 화학적 구조로 인하여 라디칼 중합시 홀 전파의 비편재화로 인해 아크릴 에멀젼의 제조시 보다 중합시간이 매우 길다. 또한 라텍스 자체가 고분자와 분산매의 분리 없이 사용되기 때문에 라텍스의 안정성은 대단히 중요하다. 물성의 저하없이 반응시간을 단축하기 위하여 기존에 사용하던 연쇄이동제인 사염화탄소 대신 tert-dodecylmercaptane 과 ${\alpha}$-methylstyrene dimer를 혼합 사용하여 반응시간을 14시간에서 12시간으로 줄일 수 있었다. 반응 성장단계에서 아크릴산의 투입량을 0.3 part로 제한하여 라텍스의 점도 상승을 막고 초기중합단계 직후에 아크릴아미드를 0.1 part 첨가하여 라텍스 입자의 내부영역과 외부영역의 고분자 사슬의 상호간확산을 막아 단단하면서도 접착력을 유지할 수 있는 라텍스의 합성 결과를 얻었다.

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

Polypyrrole-Glucose oxidase 효소전극의 Ethanol 첨가효과 (An Effect of Ethanol on Polypyrrole-Glucose Oxidase Enzyme Electrode)

  • 김현철;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 1999
  • In the case of immobilizing of glucose oxidase in organic polymer using electrosynthesis, the glucose oxidase obstructs charge transfer and mass transport during the film growth. This may lead to short chained polymer and/or make charge-coupling weak between the glucose oxidase and the backbone of the polymer. That is mainly due to insulating property and net chain of the glucose oxidase. Since being the case, it is useless to increase in amount of glucose oxidase more than reasonable in the synthetic solution. We establish qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. As ethanol was added by 0.1 rnol dm" in the synthetic solution, Michaelis-Menten constants of the resulting enzyme electrode decreased from 30.7 mmol $dm^{-3}$ to about 2 mmol $dm^{-3}$. That suggests increase in affinity of the enzyme electrode for glucose and in amount of the immobilized enzyme.zyme.

  • PDF

Spiroacetal을 포함하는 신고분자의 합성(2) (Syntheses and Properties of New Polymers Containing Spiroacetal Moiety (2))

  • 이종문;최두진;이광섭;조순채;안종렬
    • 한국염색가공학회지
    • /
    • 제4권3호
    • /
    • pp.97-115
    • /
    • 1992
  • In order to improve the processability of rigid rod-like polyspiroacetals without significant loss of their good nature, in this work a few new ideas for molecular design were adopted: (1) Copolymerization for breaking the regularity of polymer repeating units. (2) Incorporation of flexible methylene linkages or spacers in rigid spiroacetal polymer main chain. (3) Derivatization of long flexible side chains onto rigid polymer backbone. On the basis of these ideas, a series of polyspiroacetals were prepared, using the phase transfer catalyst, BTMAC, by interfacial polymerization reactions of spiroacetal monomer (SAB) and disubstituted aromatic acid chlorides or aliphatic diacid chlorides. Physical properties of these polyspiroacetals are discussed in relation to their chemical structure and are compared with those of polyspiroacetals synthesized by several other researchers.

  • PDF

Effect of Coagulant Type on the Silica Dispersion and Properties of Functionalized RAFT ESBR Silica Wet Masterbatch

  • Kim, Woong;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.167-175
    • /
    • 2020
  • Various studies have been conducted to improve silica dispersion of silica filled tire tread compounds; among them, silica wet masterbatch (WMB) technology is known to be suitable for manufacturing silica filled compounds that have high silica content and high dispersibility. Till now, the WMB study is focused on the natural rubber (NR) or emulsion styrene-butadiene rubber (ESBR) that does not have a silica-affinity functional group, and a study of NR or ESBR having a silica-affinity functional group is still not well known. Unlike the dry masterbatch technology, the WMB technology can solve the problems associated with the high Mooney viscosity when applied to silica-friendly rubber. However, a coagulant suitable for each functional group has not yet been determined. Therefore, in this study, different coagulant applied silica WMB was prepared by applying calcium chloride, sulfuric acid, acetic acid, and propionic acid by using a carboxyl group functionalized reversible addition fragmentation chain transfer ESBR. The evaluation of the WMB compounds revealed that the calcium chloride added WMB compound showed excellent silica dispersion, abrasion resistance, and rolling resistance.