• Title/Summary/Keyword: chain components

Search Result 402, Processing Time 0.021 seconds

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo;Pozzer, Leandro;Cavalieri-Pereira, Lucas;De Moraes, Paulo Hemerson;Olate, Sergio;De Albergaria Barbosa, Jose Ricardo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

Receptor activator of nuclear factor kappa-B gene polymorphisms in Iranian periodontitis and peri-implantitis patients

  • Kadkhodazadeh, Mahdi;Baghani, Zahra;Ebadian, Ahmad Reza;Kaghazchi, Zahra;Amid, Reza
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Purpose: Peri-implantitis and periodontitis are inflammatory and infectious diseases of implant and tooth-supporting tissues. Recently, the role of gene polymorphisms of immune response components in the relevant pathogenesis has been investigated. The present study was the first to evaluate the relationship between two known single nucleotide polymorphisms (SNPs) of the receptor activator of nuclear factor kappa-${\beta}$ (RANK) gene (rs3018362 and rs35211496) in chronic periodontitis and peri-implantitis patients in an Iranian population. Methods: Eighty-one periodontally healthy patients, 38 patients with peri-implantitis, and 74 patients with chronic periodontitis were enrolled in this study. DNA was extracted from blood arm vein samples by using Miller's salting out technique according to the manufacturer's instructions given in the extraction kit. The concentration of DNA samples was measured using a spectrophotometer. The genetic polymorphisms of the RANK gene were evaluated using a competitive allele specific polymerase chain reaction (KBioscience allele specific PCR) technique. Differences in the frequencies of genotypes and alleles in the diseased and healthy groups were analyzed using chi-squared statistical tests (P<0.05). Results: Analysis of rs35211496 revealed statistically significant differences in the expression of the TT, TC, and CC genotypes among the three groups (P=0.00). No statistically significant difference was detected in this respect between the control group and the chronic periodontitis group. The expression of the GG, GA, and AA genotypes and allele frequencies (rs3018362) showed no statistically significant difference among the three groups (P=0.21). Conclusions: The results of this study indicate that the CC genotype of the rs35211496 RANK gene polymorphism was significantly associated with peri-implantitis and may be considered a genetic determinant for peri-implantitis, but this needs to be confirmed by further studies in other populations.

Studies on the volatile aroma components of Edible mushroom (Tricholoma matsutake) of Korea (한국산(韓國産) 식용(食用)버섯의 향기성분(香氣成分)에 관(關)한 연구(硏究) (I) -송이 버섯의 향기성분(香氣成分)-)

  • Ahn, Jang-Soo;Lee, Kyu-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.253-257
    • /
    • 1986
  • The aroma component analysis of raw and cooked Korean edible mushroom (Trichloma matsutake) by GC, GC-MS is as follows; 1) The volatile aroma component of raw mushroom is identified as 13 kinds, and among them, 4 kinds of aroma component such as 1-octene-3-ol (73.95%), methyl cinnamate (12.52%), 2-octanol (7.62%) and octyl alcohol (2.78%)-consists 95.87% of total aroma component 2) Meanwhile, The volatilearoma component of cooked one is identified as 9 kinds and 4 of them-1-octen-3-ol (64.94%), methyl cinnamate (22.03%), 2-octanol (7.68%), and octyl alcohol (3.31%)-consists 89.61% of total aroma component. 3) The major composition of aroma component of both raw cooked ones are carbonyl compounds and alcohols. Their number of carbons is $C_8$ short chain aliphatic compounds.

  • PDF

Studies on the Volatile aroma Components of Edible mushroom (Pleurotus Ostreatus) of Korea (한국산(韓國産) 식용(食用)버섯의 향기성분(香氣成分)에 관(關)한 연구(硏究) (II) -느타리버섯의 향기성분(香氣成分)-)

  • Ahn, Jang-Soo;Lee, Kyu-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.258-262
    • /
    • 1986
  • The aroma component analysis of raw and cooked Korean edible mushroom (pleurotus ostreatus) by GC, GC-MS is as follows; 1) The volatile aroma component of raw mushroom is identified such as 3-octanol (46.01%), 3-octanone (18.75%), 1-octen-3-01 (15.39%), isobutyl alcohol (3.48%), and isoamyl alcohol (3.07%) consists 89.04% of total aroma component. 2) Meanwhile, the volatile aroma component of cooked one is identified as 16 kinds and six of them 1-octen-3-ol (66.50%), 3-octanol (10.99%), 3-octanone (9.77%), 1-octene-3-one (1.23%), octyl alcohol (1.12%), and octanol (0.96%) consists 89.61% of total aroma component. 3) The major compositions of aroma component of both raw and cooked ones carbonyl compounds and alcohols. Their number of carbons are $C_2-C_8$ short chain aliphatic compounds

  • PDF

Uses and Values of Perilla (Perilla frutescens var. frutescens) as a Functional Oil Source (기능성 유지자원으로서의 들깨(Perilla frutescens var. frutescens)의 이용과 가치)

  • Choi, Yong-Soon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.135-144
    • /
    • 2015
  • The Korean daily intake of vegetable oils has increased about 2.5-fold from 17 g/day to 46 g/day for the last several decades. Perilla (Perilla frutescens var. frutescens) has been cultivated in Korea for a long time as a dietary oil seed which has the highest content of ${\alpha}$-linolenic acid, accounting for nearly 60%. It is known that the main role of ALA is as a precursor to the longer-chain ${\omega}-3$, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), the metabolic products of ${\alpha}$-linolenic acid (ALA, ${\omega}-3$). Dietary ${\omega}-3$ fatty acids reduce inflammation and the risk of chronic diseases such as heart disease, cancer, and arthritis, but they also may act as functional components for cognitive and behavioral function. Thus, ${\alpha}$-linolenic acid is one of the essential nutrients in modern dietary patterns in which much linoleic acid is consumed. Nevertheless, perilla oil, rich in ${\alpha}$-linolenic acid, can be easily oxidized, giving rise to controversies with respect to shelf life, the deterioration of the product's commercial value, and further related toxicity. Recent research using genetic modifications has tried to develop new plant oil seeds that balance the ratio of ${\omega}-6/{\omega}-3$ fatty acids. Such trials could be a strategy for improving an easily oxidizable property of perilla oil due to high ${\alpha}$-linolenic acid. Alternatively, appropriate application of antioxidant to the oil can be considerable.

Comparison of GC Profile and Sensory Properties of Fermented Cheese Flavor Concentrates and Cheese Varieties (자연치즈와 치즈향 농축물의 화학적, 관능적 분석에 의한 향미 비교)

  • 한영실
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.925-931
    • /
    • 1995
  • Volatile compounds in Cheddar, Emmentaler, Parmesan and Roquefort cheese and cheese aroma were concentrated using a microsteam distillation-extraction apparatus and those compounds were analyzed with GC. The lipase-treated cheese aroma concentrates showed significantly higher level of short-chain free fatty acids than natural ripened cheese. The sensory properties of rancidity was high in Emmemtaler and Parmesan. Acidity and fruitness were shown high score in Roquefort. Correlation of free fatty acids and cheese flavor 'sharpness, rancidity and soapy' appear to be related(r=0.8239, 0.8918 and 0.7503), respectively. Methyl ketones, the most striking flavor components of Roquefort cheese showed high amounts in the series 2-heptanone > 2-nonanone > 2-pentanone > 2-undecanone. And the intensity of the Roquefort taste sensation 'acidity and fruitness' is linearly correlated with the methyl ketone concentrations(r=0.9284, r=0.9659).

  • PDF

Hierarchical Power Management Architecture and Optimal Local Control Policy for Energy Efficient Networks

  • Wei, Yifei;Wang, Xiaojun;Fialho, Leonardo;Bruschi, Roberto;Ormond, Olga;Collier, Martin
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.540-550
    • /
    • 2016
  • Since energy efficiency has become a significant concern for network infrastructure, next-generation network devices are expected to have embedded advanced power management capabilities. However, how to effectively exploit the green capabilities is still a big challenge, especially given the high heterogeneity of devices and their internal architectures. In this paper, we introduce a hierarchical power management architecture (HPMA) which represents physical components whose power can be monitored and controlled at various levels of a device as entities. We use energy aware state (EAS) as the power management setting mode of each device entity. The power policy controller is capable of getting information on how many EASes of the entity are manageable inside a device, and setting a certain EAS configuration for the entity. We propose the optimal local control policy which aims to minimize the router power consumption while meeting the performance constraints. A first-order Markov chain is used to model the statistical features of the network traffic load. The dynamic EAS configuration problem is formulated as a Markov decision process and solved using a dynamic programming algorithm. In addition, we demonstrate a reference implementation of the HPMA and EAS concept in a NetFPGA frequency scaled router which has the ability of toggling among five operating frequency options and/or turning off unused Ethernet ports.

Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis

  • Hong, Sung Wook;Choi, Yun-Jeong;Lee, Hae-Won;Yang, Ji-Hee;Lee, Mi-Ai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1057-1062
    • /
    • 2016
  • Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341FGC-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.