• 제목/요약/키워드: chain code

Search Result 220, Processing Time 0.025 seconds

Filling and Labelling Algorithm Using Directional Information of Chain-code (체인코드의 방향정보를 이용한 Filling과 Labelling)

  • 심재창;하금숙;현기호;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.50-58
    • /
    • 1992
  • A new algorithm for filling the interior of contours and labelling each filled region concurrently is presented. Filling is simply accomplished by inversion method. The labelling information in every scan lines is extracted directly from current direction of chain code so that the proposed algorithm needs less comparision and is more efficient. The contours are followed by two different directions, clockwise for the outer contour and counterclockwise for the inner contour to get filling and labelling information. This algorithm can be applied in case that contours are nested or regions are continous. Simulataneously the proposed algorithm can find the structure tree of object without additional post processing.

  • PDF

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

ESP model for predictions Trojan (Trojan 예측을 위한 ESP 모델 구현)

  • Kim, JongMin;Kim, MinSu;Kim, Kuinam J.
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.37-47
    • /
    • 2014
  • A Trojan malicious code is one of largest malicious codes and has been known as a virus that causes damage to a system as itself. However, it has been changed as a type that picks user information out stealthily through a backdoor method, and worms or viruses, which represent a characteristic of the Trojan malicious code, have recently been increased. Although several modeling methods for analyzing the diffusion characteristics of worms have proposed, it allows a macroscopic analysis only and shows limitations in estimating specific viruses and malicious codes. Thus, in this study an ESP model that can estimate future occurrences of Trojan malicious codes using the previous Trojan data is proposed. It is verified that the estimated value obtained using the proposed model is similar to the existing actual frequency in causes of the comparison between the obtained value and the result obtained by the Markov chain.

Line Segments Extraction by using Chain Code Tracking of Edge Map from Aerial Images (항공영상으로부터 에지 맵의 체인코드 추적에 의한 선소추출)

  • Lee Kyu-won;Woo Dong-min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.709-713
    • /
    • 2005
  • A new algorithm is proposed for the extraction of line segments to construct 3D wire-frame models of building from the high-resolution aerial images. The purpose of this study Is the accurate and effective extraction of line segments, considering the problems such as discordance of lines and blurred edges existing in the conventional methods. Using the edge map extracted from aerial images, chain code tracking of edges was performed. Then, we extract the line segments considering the strength of edges and the direction of them. SUSAN (Smallest Uni-value Segment Assimilating Nucleus) algorithm proposed by Smith was used to extract an edge map. The proposed algorithm consists of 4 steps: removal of the horizontal, vertical and diagonal components of edges to reduce non-candidate point of line segments based on the chain code tracking of the edge map, removal of contiguous points, removal of the same angle points, and the extraction of the start and end points to be line segments. By comparing the proposed algorithm with Boldt algorithm, better results were obtained regarding the extraction of the representative line segments of buildings, having relatively less extraction of unnecessary line segments.

Application of RFID -Centered around Distribution and Logistics Area- (RFID의 활용 -유통/물류 분야를 중심으로-)

  • Lee, Gong-Seop
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2010
  • RFID has been used as an identification tool substituting bar-code and its application areas are increasing due to its suitability in ubiquitous environment. This paper reviews RFID applications in some areas in which a serious amount of applications were reported such as material handling, physical distribution, and supply chain management of perishable products. The authors try to suggest research issues along with the limitations of RFID.

길이가 16인 Z$_4$위의 Preparata 부호는 연쇄조건을 만족하지 않는다

  • Kyeongcheol Yang;Dooroo Lim
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1996.11a
    • /
    • pp.286-294
    • /
    • 1996
  • In a remarkable paper 〔3〕, Hammons et al. showed that, when properly defined, the binary nonlinear Preparata code can be considered as the Gray map of a linear code eve. Z$_4$, the so-called Preparata code eve. Z$_4$. Recently, Yang and Helleseth 〔12〕 considered the generalized Hamming weights d$\_$r/(m) for Preparata codes of length 2$\^$m/ over Z$_4$ and exactly determined d$\_$r/, for r = 0.5,1.0,1.5,2,2.5 and 3.0. In particular, they completely determined d$\_$r/(m) for any r in the case of m $\leq$ 6. In this paper we show that the Preparata code of length 16 over Z$_4$ does not satisfy the chain condition.

  • PDF

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.