• Title/Summary/Keyword: chain and sprocket wheel

Search Result 5, Processing Time 0.018 seconds

Load distribution analysis of a sprocket wheel tooth for a low head hydro-turbine power transmission system (저낙차용 수차의 동력전달 스프로켓 휠 이의 하중분포 해석)

  • 강용석;김현수;김현진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1087-1095
    • /
    • 1994
  • Chain drive power transmission system was developed for a low head hydro-turbine which generates power by energy transformation on the turbine blades attached to chains. Also, experimental and theoretical analysis for the sprocket wheel tooth load distribution were performed. The tooth load was measured by the specially designed load sensor. It was found that the tooth load distribution for the steady state operation was in good accordance with the quasi-static state results showing the peak load at the final meshing tooth. The trend of the experimental results agreed with the theoretical results based on the spring model analysis and difference in the magnitude of the maximum tooth load was considered to be the effect of the variable spring constant due to the moving contact point between the roller and sprocket wheel tooth.

A Transient Analysis in Bicycle Shifting using A Discrete Chain Model (이산화 체인 모델을 이용한 자전거 변속 과도상태 해석)

  • Kim, Jungyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.25-30
    • /
    • 2013
  • This article deals with the transient analysis in bicycle shifting using a discrete chain model. Among the various components of a bicycle, we focused in the power-transmissions on the contact points between the chain element and sprocket. And by imposing kinematic motions on the front and rear derailleurs, we analyzed the shifting mechanism for increasing the rotational speed of rear wheel. In order to build the dynamic analysis model, we first tore down the real bicycle and measured each component's design parameters. Then we made 3-dimensional CAD models for each component related to the power transmission of a bicycle. Using the converted 3-dimensional dynamic model for the simulation program, we performed non-shifting and shifting dynamic analysis. As a result, we investigated the dynamic behaviors of a discrete chain model focused on the interaction between the chain and sprocket wheel.

Dynamic Anlaysis of High Mobility Tracked Vehicles (고속주행용 궤도차량의 동적해석)

  • 김상두;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2001
  • In this study, modeling and analysis procedure for the dynamic analysis of a high mobility tracked vehicle system were studied. The vehicle model used in this investigation is assumed to be consist of two kinematically decoupled subsystems. The chassis subsystem consists of chassis frame, sprocket, support rollers, road wheels, idler wheel, road wheel arms and idle wheel arm, while the track subsystem is represented as a closed kinematic chain consisting of track links and end connectors interconnected by revolute joints with bushing. Nonlinear contact force module describing the interaction between track link, and sprocket, idler wheel, road wheel, support roller, ground was used. The effects of road wheel arms and idler wheel arm due to tension adjuster are also considered.

  • PDF

A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1))

  • Park, Hoo-Myung;Kang, Jin-Kab;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

Design of Slide-Type Automatic Pallet Changer for M/C by Simulation (시뮬레이션을 통한 M/C용 공작물 자동교환장치의 설계)

  • Park, Hoo-Myoung;Jun, Jae-Uhk;Lee, Sang-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.111-121
    • /
    • 2015
  • The objective of this study is to develop an automatic object changer unit to improve changing process problems existing in the conventional horizontal machining center. In order to perform this objective, an upward and downward traverse unit was designed. This unit consists of a motor, reducer, chain and sprocket wheel, and an upper and lower base. This automatic object changer unit performs a sliding contact motion in a purpose built and designed frame. Constraint conditions for the upward and downward traverse unit were first designed. Then, an operation mechanism was designed and introduced as the sum of the kinetic energy for the sprocket wheel and the upper and lower base and which was based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. The paper covers the design of th e Automatic Pallet Changer for th e machining center.