• Title/Summary/Keyword: cg1360

Search Result 2, Processing Time 0.017 seconds

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum

  • Wang, Xiaochen;Yang, Hongyu;Zhou, Wei;Liu, Jun;Xu, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1288-1298
    • /
    • 2019
  • Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.

Somatic Cell Nuclear Transfer of Oocytes Aspirated from Postovulatory Ovarian Follicles of Superovulated Rabbits

  • Shang, Jiang-Hua;Xu, Ru-Xiang;Jiang, Xiao-Dan;Zou, Yu-Xi;Qin, Ling-Sha;Cai, Ying-Qian;Yang, Zhi-Jun;Zheng, Xing;Cui, Sheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1354-1360
    • /
    • 2007
  • The aim of this study was to evaluate if oocytes, aspirated from postovulatory ovarian follicles of superovulated rabbits 14 h post-hCG administration, could be efficiently used as ooplasm recipients for somatic cell nuclear transfer (SCNT). Within a common SCNT protocol, a comparison between oocytes recovered by direct aspiration (aspirated) from available ovarian follicles and oocytes flushed out from oviducts (flushed) was carried out. The results showed that maturation and enucleation rates of aspirated oocytes were 70.7% and 69.2%, significantly lower than 95.3% (p<0.01) and 83.6% (p<0.05), respectively, from flushed oocytes. However, following enucleation of matured oocytes as ooplasm recipients for SCNT, no difference was recorded in fusion and cleavage rates, as well as blastocyst development from cleaved embryos or hatching of blastocysts between aspirated and flushed groups. Additionally, some matured aspirated and flushed oocytes were also used for immediate parthenogenetic activation and the resulting embryo development was not significantly different. Results from this study show the following: i) the majority of oocytes aspirated from postovulatory ovarian follicles of superovulated rabbits 14 h post-hCG administration are matured and can be used directly as ooplasm recipients for SCNT; ii) the reconstructed embryos derived from these oocytes have similar in vitro developmental ability to those flushed from the oviducts.