• Title/Summary/Keyword: cfd

Search Result 5,741, Processing Time 0.028 seconds

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

Performance Analysis of a Portable Horizontal Axis Hydro Turbine by Computational Fluid Dynamics (CFD를 통한 휴대용 수평축 수차의 성능해석)

  • Park, Ji-Hoon;Baek, Sang-Hwa;Choi, Hyen-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.561-568
    • /
    • 2020
  • A performance analysis was conducted according to changes in inflow velocity and the tip speed ratio of a portable horizontal-axis hydro turbine that can be used for marine leisure sports and outdoor activities by using the commercial computational fluid dynamics software ANSYS CFX. By using the analysis result and flow field analysis, the design was reviewed and the performance of the device was confirmed. In addition, data necessary to improve the performance of the hydro turbine were acquired by performing an additional performance analysis according to the variable blade pitch angle. The results among the numerical analysis cases show that the highest performance at all inflow velocities and blade pitch angles if achieved at a tip speed ratio of 4. The output power was found to be 30 W even under some conditions below the design flow rate. Among the numerical analysis cases, the highest output power (~ 85 W) and power coefficient (~ 0.30) were observed at an inlet flow rate of 1.5 m/s, a blade pitch angle of 3°, and a tip speed ratio of 4.

The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire (도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향)

  • Lee, Seung-Chul;Kim, Sang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.183-195
    • /
    • 2012
  • This study conducted comparative analysis to estimate critical velocity in tunnel fire under variation of grid number and the location and size of the fire source using three-dimensional computational fluid dynamics. In the target tunnel, by one-dimensional way, the calculated critical velocity in the tunnel, 2.22 m/s was estimated, if appling hydraulic diameter, instead of the tunnel height. According to six numerical analysis, each grid number has different position, temperature, and CO concentration of back-layering. In the case of the subject, the case 1 with 0.84 million grid was found to be the most ideal. According to the location and size of the fire source, after three cases for three-dimensional numerical analysis was performed, it is resulted that the location and size of the fire source affect the critical velocity, because air velocity distribution, temperature distribution and CO concentration distribution showed different each case. This is due to the difference of heat exchange area and locations. Therefore, it is necessary to decide appropriate grid number, and the location and size of the fire source for processing techniques through comparison with actual experiment results and three-dimensional analysis.

Flow and smoke behavior of a longitudinal ventilation tunnel with various velocities using computational fluid dynamics (팬의 운전조건에 따른 종류식환기터널 내의 연기거동에 관한 전산유체역학연구)

  • Lee, J.H.;Kwon, Y.J.;Kim, D.E.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • A numerical analysis on the smoke behavior and evacuee safety has been performed with computational fluid dynamics. The purpose of this study is to build computational processes for an evacuation and prevention of a fire disaster of a 3 km-length tunnel in Korea. To save computational cost, 1.5 km of the tunnel that can include a few cross-passing tunnels is considered. We are going to assess the fire safety in a road tunnel according to the smoke level, which consists of the smoke density and the height from the floor. The smoke density is obtained in detail from three-dimensional unsteady CFD analysis. To obtain proper temperature distributions on the tunnel wall, one-dimensional conduction equation is considered instead of an adiabatic wall boundary or a constant heat flux. The tunnel considered in this study equips the cross passing tunnels for evacuees every 250 m. The distance is critical in both safety and economy. The more cross passing tunnels, the more safe but the more expensive. Three different jet fan operations can be considered in this study; under- and over-critical velocities for normal traffic condition and 0-velocoty operation for the traffic congestion. The SE (smoke environment) level maps show a smoke environment and an evacuating behavior every moment.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.