• Title/Summary/Keyword: cerium

Search Result 242, Processing Time 0.023 seconds

A Study on Recovery of Rare Earth and Acid Leaching for Wet Recycling of Waste NiMH Batteries (니켈수소 폐이차전지의 습식 재활용을 위한 산침출 및 희토류 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • In order to industrially recycle nickel, cobalt and rare earth elements included in waste NiMH batteries, electrode powder scraps were recovered by dismantle, crushing and classification from automobile waste battery module. As a result of leaching recovered electrode powder scrap with sulfuric acid solution, 99% of nickel, cobalt and rare earth elements were leached under reaction conditions of 1.0 M sulfuric acid solution, pulp density 25 g/L and reaction temperature $90^{\circ}C$ for 4 hours. In addition, the rare earth elements were able to separate from nickel / cobalt solution as cerium, lanthanum and neodymium precipitated under pH 2.0 using 10 M NaOH.

Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process (알루미나가 포함된 복합산화물의 제조와 열물성 특성평가)

  • Lim, Saet-Byeol;You, Hee-Jung;Hong, Tae-Whan;Jung, Mie-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating (II); Effect on Oxidation and Corrosion REsistance of $CeO_2$ Stabilized Zirconia Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구 (II);$CeO_2$ 안정화 지르코니아 박막의 내산화 및 내식성 효과)

  • 이재호;우일기;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Ceria(CeO2) stabilized zirconia(CeSZ) sol was synthesized with zirconium n-butoxide Zr(OC4H9)4 and cerium nitrate hexahydrate Ce(NO3)3.6H2O as precursors and ethylacetoacetate(EAcAc) as a chelating agent under atmosphere. CeSZ films were deposited on AISI 304 stainless steel using the prepared polymeric sol by dipcoating and the coating characteristics were investigated by XRD, ellipsometry, scratch test and SEM. The CeSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$ and it was not converted into monoclinic phase up to 100$0^{\circ}C$ by the addition of 16mol% CeO2 as a stabilizer which could suppress phase transformation of zirconia. The CeSZ films were prepared by varying the EAcAc contents and the cncentration of CeSZ sol and measured the thickness and refractive index. From these results, it was found that the EAcAc contents and concentration of CeSZ coating sol evidently affect the densification of CeSZ film. The CeSZ film coated with 0.4M CeSZ sol and heat-treated at $600^{\circ}C$ for 10min had thickness of 50nm and 17% porosity. The CeSZ film on 304 stainless steel effectively acted as a protective layer against oxidation up to 80$0^{\circ}C$ and had superior corrosion resistance in 25% H2SO4 solution for 4.5 hrs.

  • PDF

The Synthesis and Characteristics of Covalently Cross-Linked SPEEK/Cs-substituted TPA/CeO2 Composite Membranes for PEMWE (PEMWE를 위한 Cs치환에 따른 공유가교 SPEEK/Cs(x)-TPA/Ceria막의 합성 및 특성 연구)

  • Hwang, Sungha;Park, Daeyoung;Oh, Seunghee;Yoon, Daejin;Oh, Yunsun;Seo, Hyeon;Kang, Aansoo;Moon, Sangbong;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • CL-SPEEK/Cs-TPA/$CeO_2$ composite membrane was prepared for polymer electrolyte membrane water electrolysis (PEMWE). In order to improve the electrochemical, mechanical, durabilities and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated and the organic-inorganic blend composite membranes was prepared by loading cesium-substituted tungstophosphoric acid (Cs-TPA) by titration method with cross-linking agent contents of 0.01mL. Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the PEMWE circumstance and to increase the duration of the membrane. CL-SPEEK/$Cs_{(1)}$-TPA/CeriaIn conclusion, 1% membrane showed the optimum results such as 0.119 S/cm at $80^{\circ}C$ of proton conductivity and 62MPa of tensile strength.

Characteristic of ferroelectric properties of $(Bi,Ce)_4Ti_3O_{12}$ thin films deposited by pulsed laser deposition (Pulsed laser deposition 방법으로 증착된 $(Bi,Ce)_4Ti_3O_{12}$ 박막의 강유전 특성)

  • Oh, Young-Nam;Seong, Nak-Jin;Yoon, Soon-Gil;Jeon, Min-Gu;Woo, Seong-Ihl;Kim, Chang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.168-171
    • /
    • 2003
  • Bismuth layered structure, Cerium-substituted $Bi_4Ti_3O_{12}$ ($(Bi,Ce)_4Ti_3O_{12}$) thin films were prepared on the $Pt/TiO_2/SiO_2/Si$ substrates by the pulsed laser deposition method. We investigated the Ce-subsitituted effect on the grain orientation and ferroelectric properties. $Ce^{3+}$ ion substitution for $Bi^{3+}$ ion in perovskite layers of BTO decreased the deeree of c-axis orientation and increased the remanent polariation (2Pr). The structure and morphology of the films were characterized using X-ray diffraction and atomic force microscopy. The $(Bi,Ce)_4Ti_3O_{12}$ (BCT) thin films, which were annealed $700^{\circ}C\;and\;800^{\circ}C$ for 10min and 30min, showed a perovskite phase and dense microstructure. As the thickness of the BCT film was decresed that the ferroelectric properties of the BCT thin films were good.

  • PDF

Evaluation of Rare Earths viewed from the Occupational Health (산업보건 측면에서의 희토류 건강영향 평가)

  • Shin, Seo-Ho;Rim, Kyung-Taek;Kim, Jong-Choon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.237-252
    • /
    • 2016
  • Objectives: This study was conducted in order to improve the current understanding of rare earths(RE) and to provide supporting data for establishing occupational health policies by reviewing the toxicological data and issues caused by the use of RE compounds in various fields. Methods: To evaluate the potential toxicity of RE from the viewpoint of occupational health, we summarized extensive reviews of relevant articles in the toxicology(animals and cells), occupational health and safety, and epidemiologic literature. Results: Although occupational RE exposure occurs extensively from ore mining and refining to end users in various industrial applications, epidemiologic study has not been performed among workers up to now. Bioaccumulation and adverse effects of RE have also been mentioned in ore mining regions and nearby residences, but safety standards for each process are insufficient. Moreover, because new commercial recycling technology will soon be applied to various industries, regulation and policies are needed for preventing abuse of recycling. In the results of animal toxicity for a few REs(mostly cerium, lanthanum, and gadolinium), toxicities of liver, lung, blood, and the nervous system were identified due to oxidative stress, but study of long-term RE exposure is required. Understanding the dual effect for RE and discovery of biomarkers pose a scientific challenge in further mechanism studies. Conclusions: In the future, additional hazard evaluation based on animal experiments is required, alongside continuous research for developing analytical methods and discovering biomarkers. Finally, RE occupational health and safety management needs to be integrated into the sustainable use of these materials.

Steam Explosion Experiments using ZrO$_2$ (ZrO$_2$를 이용한 증기폭발 실험)

  • Song, Jin-Ho;Kim, Hui-Dong;Hong, Seong-Wan;Park, Ik-Gyu;Sin, Yong-Seung;Min, Byeong-Tae;Kim, Jong-Hwan;Jang, Yeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1887-1897
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named "Test for Real Corium Interaction with water (TROI)" using reactor material to investigate whether the molten reactor material would lead to energetic steam explosion when interacted wish cold water at low pressure. The melt-water interaction experiment is performed in a pressure vessel with the multi-dimensional fuel and water pool geometry. The novel concept of cold crucible technology, where powder of the reactor material in a water-cooled cafe is heated by high frequency induction, is firstly implemented for the generation of molten fuel. In this paper, the lest facility and cold crucible technology are introduced and the results or the first series of tests were discussed. The 5 kg of molten ZrO$_2$jet was poured into the 67cm deep water pool at 30 ∼ 95 $\^{C}$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicate the differences between the two cases.

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF