• 제목/요약/키워드: cerium

검색결과 242건 처리시간 0.032초

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

크롬 프리 세륨 용액에 의한 AZ31 마그네슘 합금의 화성 피막에 대한 특성 평가 (Characteristics of Conversion Coating of AZ31 Magnesium Alloy Formed in Chromium-Free Cerium-Based Solution)

  • 김명환;이동욱;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.62-68
    • /
    • 2016
  • A chromium-free Ce-based conversion coating formed by immersion in a solution containing cerium chloride and nitric acid on AZ31 magnesium alloy has been studied. The effects of acid pickling on the morphology and the corrosion resistance of the cerium conversion coating were investigated. The corrosion resistance of the conversion coating prepared on AZ31 Mg alloy after organic acid pickling was better than that of inorganic acid pickling. The morphology of the conversion-coated layer was observed using optical microscope and SEM. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.0 to $1.1{\mu}m$. The main elements of the conversion coating of AZ31 Mg alloy are Mg, O, Al, Ce and Zn by EDS analysis. The electrochemical polarization results showed that the Ce-based conversion coating could reduce the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions.

신 촉매를 이용한 DME 전환율에 관한 연구 (A Study on DME Conversion rate using New Catalyst)

  • 정인상
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.123-128
    • /
    • 2011
  • It has been stand high in estimation to converse from Carbon dioxide to Dimethyl Ether in new alternative fuel energy division in 21C, especially Using of DME in point of view of transportation fuel has been discussed of a new clean energy which is very lower of exhaust gas than gasoline and diesel energy. In this paper it is used ZSM-5 and I developed new catalyst by addition of cerium to control acidity. The new catalyst was proved high conversion rate, when it was conversed from methanol to DME, there wasn't any additional material except DME and water, and I overlooked reaction temperature, reaction time, amount of catalyst, amount of added cerium, effect of water content in methanol, reaction temperature by making change of reaction time. I have conclude that conversion rate to DME was increased as increased of catalyst amounts. The best catalyst condition of without additional product was treated poisoning from ZSM-5 to 5% cerium and new catalyst was not effected in purity of fuel methanol.

Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구 (Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction)

  • 변창기;임효빈;박지혜;백정훈;정정민;윤왕래;이광복
    • 청정기술
    • /
    • 제21권3호
    • /
    • pp.200-206
    • /
    • 2015
  • 산화세륨의 첨가가 수성가스전이반응 효율에 미치는 영향을 조사하기 위해서, Cu-ZnO-CeO2촉매를 공침법을 사용하여 제조하였다. 일련의 Cu-ZnO-CeO2 촉매는 Cu 함량(50 wt%)을을 고정시키고 산화세륨(CeO2 기준으로, 0, 5, 10, 20, 30, 40 wt%)의 함량을 조절하면서 제조되었고 이를 이용하여 GHSV 95,541 h-1의 기체 유량범위, 200~400 ℃의 온도범위에서 수성가스전이반응 촉매활성이 측정되었다. 또한, BET, SEM, XRD, H2-TPR, XPS 분석을 통하여 촉매특성이 분석되었다. CeO2가 첨가된 촉매는 구리 분산도와 결합에너지 같은 촉매특성의 다양한 변화를 나타내었다. 10wt%의 CeO2가 최적의 첨가량으로 판단되며 이때 촉매는 가장 낮은 온도에서 환원이 일어났으며 반응에서 가장 높은 촉매 활성을 보였다. 또한 CeO2가 첨가된 촉매는 CeO2가 첨가되지 않는 촉매와 비교하여 높은 온도영역에서 활성이 향상되었다. 따라서, 최적 조성의 CeO2첨가는 높은 구리 분산도, 낮은 결합에너지, 구리 금속의 응집 방지를 유도하여 높은 촉매활성을 유도하였다.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.