• Title/Summary/Keyword: cerebral infarct

Search Result 155, Processing Time 0.03 seconds

A Case Report of a Patient with a Left Middle Cerebral Artery Infarction and Delirium Treated with Korean Medicine (한방치료로 호전된 섬망을 동반한 좌측 중대뇌동맥경색 환자의 치험 1례)

  • Noh, Hyeon-seok;Ha, You-kyoung;Yi, Chan-sol;Hong, Seung-cheol;Park, Song-won;Choi, Dong-jun;Park, Bong-ki
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • Objectives: The purpose of this case study is to describe the effect of Korean medicine on a patient with delirium caused by a left middle cerebral artery infarct. Methods: The patient was treated with Sopungbosimdodam-tang, acupuncture, and moxibustion. The Korean version of the Delirium Rating Scale (K-DRS), Neelon and Champagne (NEECHAM) Confusion Scale, and Korean Version of the Mini-Mental State Examination (MMSE-K) were used to evaluate the effect of the treatment. Results: After 50 days of treatment with Sopungbosimdodam-tang, the patient's K-DRS score decreased from 16 to 8. The NEECHAM Confusion Scale also improved from 17 to 23, and the MMSE-K score improved from 1 to 7. Conclusion: This clinical study suggested that Korean medicine could contribute greatly to the treatment of delirium caused by a left middle cerebral artery infarct.

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Effects of Sunghyangjungki-san(Xingxiangzhengqi-san) on Bax and Bcl-2 Expressions in the MCAO Rats (성향정기산(星香正氣散)이 중대뇌동맥폐쇄 흰쥐의 Bax 및 Bcl-2 발현에 미치는 영향)

  • Jeong, Beoul;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.2
    • /
    • pp.33-43
    • /
    • 2008
  • Objectives : Sunghyangjungki-san(Xingxiangzhengqi-san) is a herb decoction prescribed frequently for stroke patients. The present study investigated neuroprotective effects of Sunghyangjungki-san(Xingxiangzhengqi-san) against the ischemic damage of the rat brain. Neuronal cell death under the cerebral ischemia is distinguished with the delayed cell death through apoptosis. Consequently, the effects of Sunghyangjungki-san(Xingxiangzhengqi-san) was evaluated with Bax and Bcl-2 expressions as apoptosis related factors in the brain tissues. Methods : The ischemic damage was induced by the middle cerebral artery occlusion(MCAO) method in Sprague-Dawley rats. Water extract of Sunghyangjungki-san(Xingxiangzhengqi-san) was treated for 5 days after the MCAO. Neurological scores and infarct size with TTC were measured. Bax and Bcl-2 expressions in the brain tissues were observed with immunohistochemistry. Results : Sunghyangjungki-san(Xingxiangzhengqi-san) treatment improved neurological score significantly at 5 days after the MCAO. Sunghyangjungki-san(Xingxiangzhengqi-san) treatment decreased infarct size by the MCAO, but it was not significant statistically. Sunghyangjungki-san(Xingxiangzhengqi-san) treatment attenuated Bax positive neurons significantly in the cerebral penumbra and the caudate putamen. Bcl-2 positive neurons were increased, but not significant. Sunghyangjungki-san(Xingxiangzhengqi-san) treatment increased Bcl-2/Bax expression ratios significantly in the cerebral penumbra and the caudate putamen. Conclusions : These results suggest that Sunghyangjungki-san(Xingxiangzhengqi-san) has a neuroprotective effect on the stroke with modulation of apoptosis related factors.

The Role of Aquaporin-4 in Cerebral Edema Formation after Focal Cerebral Ischemia in Rats

  • Song, Young-Jin;Bae, Hae-Rahn;Ha, Se-Un;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.30-38
    • /
    • 2007
  • Objective : To elucidate the role of aquaporin-4[AQP4] in cerebral edema formation, we studied the expression and subcellular localization of AQP4 in astrocytes after focal cerebral ischemia. Methods : Cerebral ischemia were induced by permanent middle cerebral artery[MCA] occlusion in rats and estimated by the discoloration after triphenyltetrazolium chloride[TTC] immersion. Change of AQP4 expression were evaluated using western blot. Localization of AQP4 was assessed by confocal microscopy and its interaction with ${\alpha}-syntrophin$ was analyzed by immunoprecipitation. Results : After right MCA occlusion, the size of infarct and number of apoptotic cells increased with time. The ratio of GluR1/GluR2 expression also increased during ischemia. The polarized localization of AQP4 in the endfeet of astrocytes contacting with ventricles, vessels and pia mater was changed into the diffuse distribution in cytoplasm. The interactions of AQP4 and Kir with ${\alpha}-syntrophin$, an adaptor of dystrophin complex, were disrupted by cerebral ischemia. Conclusion : The deranged spatial buffering function of astrocytes due to mislocalized AQP4/Kir4.1 channel as well as increased assembly of $Ca^{2+}$ permeable AMPA receptors might contribute to the development of edema formation and the excitotoxic neuronal cell death during ischemia.

Neuroprotective Effects of KC0244, a Glycine Site Antagonist, in a Rat Model of Transient Focal Ischemia

  • Ku, Hee-Jung;Churlmin Seong;Park, No-Sang;Changbae Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.143-143
    • /
    • 1998
  • Antagonists acting at the glycine site of the NMDA receptor have been gaining safer alternatives for stroke therapy because they have few adverse effect competitive and noncompetitive NMDA antagonists. Therefore, the neuroprotect novel glycine site antagonist KC0244 were evaluated in a rat model of transient comparison with GV150526A in a developmental phase. Middle cerebral artery oc was produced by insertion of a silicone-coated 4-0 nylon monofilament to the o in male Sprague-Dawley rats under isoflurane anesthesia. After 90 or 120 min retracted and the ischemic tissue reperfused. In 90-min MCAO model, GV150526A was administered 30 min before MCAO or immediately after MCAO. In 120-min MC KC0244 or GV150526A (10 mg/kg, i.p.) was administered 1 hr before MCAO or imme MCAO. Infarct volume was measured 24 hr after MCAO using the 2,3,5-triphe chloride staining method. In 90-min MCAO model, treatments with GV1505 significantly reduce infarct volume although they tended to slightly reduce cor approximately 19% compared with the nontreated group. In 120-min MCAO model with GV150526A did not either significantly reduce infarct volume although the reduce total infarct volume by approximately 16% compared with the vehicle-tre However, 1-hr preischemic and immediate treatments with KC0244 reduced total i 39 and 30% (corrected total infarct volume by 44 and 32%), respectively, co vehicle-treated control group. The results suggest that KC0244 can provid against transient focal ischemic damage with greater in vivo potency than GV150

  • PDF

Yangkyuksanhwa-Tang Attenuates Ischemic Brain Injury in a Focal Photothrombosis Stroke Model (뇌허혈 마우스모델에서 양격산화탕이 뇌 손상 완화에 미치는 효과)

  • Han, Do-Kyung;Pak, Malk-Eun;Kwon, Ok-Sun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1258-1266
    • /
    • 2019
  • Yangkyuksanhwa-Tang (YKSH), consisting of nine different herbs, is commonly used in Soyangin-type individuals with stroke, based on the Sasang Constitution Theory in Korea. However, no evidence has yet confirmed a beneficial effect of YKSH in ischemic stroke treatment. In this study, we investigated the effects of YKSH on ischemic brain injury in a mouse model of cerebral ischemia. Focal cerebral ischemia in mice was induced by photothrombosis, and behavioral recovery was evaluated. Infarct volume, inflammation, and newly generated cells were evaluated by histology and immunochemistry. YKSH treatment resulted in a significant recovery from the motor impairments induced by focal cerebral ischemia, as determined with wire grip and rotarod tests. YKSH treatment also decreased the infarct volume and the number of cells positive for tumor necrosis factor-${\alpha}$ and myeloperoxidase when compared with a vehicle-treated control group. By contrast, YKSH treatment considerably increased the number of cells positive for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1, as well as the number of cells doubly positive for Ki67/doublecortin when compared with the vehicle-treated group. These results suggest that YKSH treatment attenuated the infarct size by anti-inflammatory action, astrocyte and microglia activation, and neuronal proliferation, thereby facilitating neurofunctional recovery from a cerebral ischemic assault. YKSH could therefore be a potential treatment for neurofunctional restoration of the injured brains of patients with stroke.

A Case of Cerebral Infarction Associated with Mycoplasma pneumoniae Infection (Mycolasma pneumoniae 감염에 의한 뇌경색증 1례)

  • Ahn, Young Joon;Choi, Ki Cheol;Yang, Eun Seok;Park, Yeong-Bong;Park, Sang-Gi;Moon, Kyung Rye;Kim, Young Sook
    • Pediatric Infection and Vaccine
    • /
    • v.5 no.2
    • /
    • pp.308-312
    • /
    • 1998
  • Mycoplasma pneumoniae infection is usually confined to the respiratory tract but it can cause a variety of extrapulmonary manifestations such as rashes, myalgia, hemolytic anemia, cerebral infarction, transverse myelitis, cerebellar ataxia, Guillain-Barre syndrome and meningoencephalitis. Neurologic complications of Mycoplasma pneumonia have been rarely reported until now. Cerebral infarction as a complication of mycoplasma infection in children has been very rarely reported. In our case, in a young girl with M. pneumoniae infection, a cerebral infarct resulted in persistent and significant neurological dysfunction. We report a 11-year-old girl with cerebral infarction associated with clinical and serologic evidence of Mycoplasma infection.

  • PDF

Effect of Tooth-Cut Induced Dental Malocclusion on Mouse Model of Ischemic Stroke (생쥐의 하악 치아 절단으로 인한 부정교합이 뇌경색에 미치는 영향)

  • Lee, Young-Jun;Lee, Byoungho;Cho, Suin
    • Journal of TMJ Balancing Medicine
    • /
    • v.9 no.1
    • /
    • pp.4-11
    • /
    • 2019
  • Objectives: Although intraoral balancing appliance therapy has been used effective to several diseases, verification studies through cerebral diseases are poorly reported so far. Thus we investigated the effect of tooth-cut induced dental malocclusion against mouse model of ischemic stroke. Methods: Tooth-cut and 90 min middle cerebral artery occlusion (MCAO) were loaded to C57BL/6 male mice, and total infarct area, neurological deficit scores (NDS), histological change of hippocampal region were observed. Production levels of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in cerebral tissue were also measured. Results: The longer the tooth-cut period, the greater the area of cerebral infarction caused by MCAO, and NDS began to increase as the tooth was cut, and the results were more negative when MCAO was loaded. Histological change of hippocampal cells was significant when tooth-cut was maintained for 7 days. Those damages were thought to depend on the generation of ROS and iNOS in brain tissue. Conclusions: Since tooth-cut increased total area of cerebral infarction due to MCAO in mice, it is able to be confirmed that anomaly of the temporomandibular occlusion can affect neurological diseases.

  • PDF

Neuroprotective Effect of Heyneanol A from the roots of vitis amurensis Rup (왕머루포도 뿌리에서 분리한 heyneanol A의 신경보호효과)

  • Hwang, Hwa-Soo;Namgung, Mi-Ae;Lee, Eun-Ok;Shim, Bum-Sang;Ahn, Kyoo-Seok;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1411-1414
    • /
    • 2007
  • According to the report of Korea National Statistical Office in 2007, cerebral vascular disease is second cause of deaths in Korean. Cerebral ischemia is one of the main reason of cerebral vascular diseases. To evaluate the neuroprotective effect of heyneanol A against cerebral ischemia, we used the middle cerebral artery occlusion model (MCAO). Heyneanol A from root of vitis amurensis Rup is a tetramer of resveratrol as known anti-oxidant and anti-cancer agent. Although the effects of resveratrol in the various fields have been well established, little is known of the effects of heyneanol A. In this study, heyneanol A reduced infarction and edema volume by 33.5% and 57% compared with control groups (vehicle), respectively. Also, neurological score was decreased by heyneanol A. It's effects were more potent than resveratol. Taken together, these results exerted that heyneanol A has a neuroprotective effect against cerebral ischemia.