• 제목/요약/키워드: ceramic-ceramic joining

검색결과 98건 처리시간 0.021초

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구 (Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling)

  • 류새희;박종하;이선영;이재성;이재철;안성훈;김대근;채재홍;류도형
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질 (Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method)

  • 오정란;이석형;우이형
    • 구강회복응용과학지
    • /
    • 제19권4호
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

플라즈마 용사용 $Al_2O_3/SS316$ 복합 분말 제조 및 경사 코팅충의 제조에 관한 연구 (Properties of Plasma Sprayed $Al_2O_3/SS316$ Graded Coatings)

  • 민재웅;송병길;김삼중;노재승;서동수
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.109-115
    • /
    • 2002
  • In the case of using high temperature by coating ceramic/metal, large stress was produced due to difference of thermal expansion coefficient between those. And then lead to delamination. In order to relaxation of the stress A1$_2$O$_3$/SS316 composite powders with $10wt.%Al_2O_3$ compositional gradient and $10wt.%Al_2O_3$ agglomerated powder were made by spray drying method. These powders were sintered to improve the strength and to be plasma sprayed in order to fabricate the FGC(functionally graded coating). The influence of gun power, working distance and Ar pressure on the microstructure of the coating layer was studied in order to optimize the plasma spray conditions. It was proven that the optimum conditions were 40kw gun power, 5cm working distance and $100ft^3/h$ Ar flow for both powders. FGC with 10 compositional steps was fabricated and the total thickness was 1.3mm. FGC was heat treated at $1100^{\circ}C$for 10hours to evaluate the heat resisting characteristics.

질화규소 세라믹의 레이저 예열선삭에 관한 연구 (IV) - 질화규소 세라믹의 레이저예열선삭 메커니즘 및 적용 - (A Study on Laser Assisted Machining for Silicon Nitride Ceramics (IV) - Mechanism and Application of LAM for Silicon Nitride Ceramics -)

  • 김종도;이수진;박서정;이제훈
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.40-44
    • /
    • 2010
  • Laser assisted machining (LAM) has been researched in order to machine the silicon nitride ceramics economically and effectively. LAM is an effective machining method by local heating of the cutting part to the softening temperature of the silicon nitride using laser beam. When silicon nitride ceramics is heated using a laser beam, the surface of silicon nitride ceramic is softened, oxidized and decomposed. And then surface hardness is decreased. Through machining in low viscosity and hardness conditions, silicon nitride was machined effectively and the life span of tool was increased. The plastic deformation was occurred due to softening of amorphous YSiAlON above $ 1,000^{\circ}C$. Transgranular fracture of ${\beta}-Si_3N_4$ was occurred when YSiAlON was not softened, but mostly intergranular fracture was occurred by the plastic deformation of softened YSiAlON.

Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구 (A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder)

  • 오성용;현옥배;김찬중
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

활성 용가재를 이용한 세라믹 및 스테인레스강의 접합 (Ceramic and stainless steel brazing by active filler metal)

  • 김원배;김숙환;권영각;장래웅;배석천
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.17-27
    • /
    • 1991
  • The direct brazing technology which could be used for the simplification of brazing process and the improvement of brazed joint quality was studied with $Al_2O_3$ and stainless steels. The brazing of $Al_2O_3$ to STS304 or STS430 was performed under different brazing conditions such as brazing filler metal, temperature, heating rate and brazing time. Microstructural observation and chemical analysis be SEM/EPAM were carried out to verify the quality of brazed joints. 4-point bending strength of brazed joints was also measured to find the optimal brazing conditions. The results showed that, in brazing of $Al_2O_3$, the mixed oxide layer resulted from the reaction between Ti in filler metal and oxide layer on the material surface to be brazed was found to be bery important for the joint quality. The width of oxide layer varied with the brazing conditions such as brazing time, heating rate and chemical composition of filler metals. The strength of brazed joints was more affected by the type of materials and their thermal properties than by brazing heat cycle.

  • PDF

AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I) (Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF

질화규소 세라믹의 레이저 예열선삭에 관한 연구 (II) - 예열선삭된 SSN 및 HIPSN 질화규소 세라믹의 표면특성 - (A Study on Laser Assisted Machining for Silicon Nitride Ceramics (II) - Surface Characteristics of LAM Machined SSN and HIPSN -)

  • 김종도;이수진;강태영;서정;이제훈
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.80-85
    • /
    • 2010
  • This study focused on laser assisted machining (LAM) of silicon nitride ceramic that efficiently removes the material through machining of the softened zone by local heating. The effects of laser-assisted machining parameters were studied for cost reduction, and active application in processing of silicon nitride ceramics in this study. Laser assisted machining of silicon nitride allows effective cutting using CBN tool by local heating of the cutting part to the softening temperature of YSiAlON using by the laser beam. When silicon nitride is sufficiently preheated, the surface is oxidized and decomposed and then forms bloating, micro crack and silicate layer, thereby making the cutting process more advantageous. HIPSN and SSN specimens were used to study the machining characteristics. Higher laser power makes severer oxidation and decomposition of both materials. Therefore, HIPSN and SSN specimens were machined more effectively at higher power.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF