• Title/Summary/Keyword: ceramic panel

Search Result 99, Processing Time 0.031 seconds

Effect of pH and Drying Temperature on Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors by Sol-Gel Technique (졸-겔 합성에서 pH 및 건조온도가 Zn2SiO4:Mn,Al 녹색 형광체의 발광특성에 미치는 영향)

  • Sung, Bu-Yong;Han, Cheong-Hwa;Park, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.333-337
    • /
    • 2005
  • In order to improve the performance of green emitting phosphors for plasma display panel, the $Zn_2SiO_4:Mn,Al$ phosphors were synthesized using sol-gel technique and studied using SEM and VUV photoluminescence spectrometer. pH values of the starting solutions (pH = 0.5$\~$2.34) were controled by HCl as the catalysis of hydrolysis and wet gels were dried at $80^{\circ}C$ and $120^{\circ}C$, respectively. We investigated the effects of pH and drying temperatures during sol-gel processes. The results indicated that the phosphor prepared at pH = 1 showed the maximum emission intensity in both drying conditions and the effect of pH of the starting solution on morphology were increased with particle size as HCl and phosphor dried at high temperature showed more spherical and smaller particles than at low.

Electrical Properties of Large Alumina Ceramics Prepared by Various Processing (제조 공정별 대형 알루미나 세라믹스의 전기적 특성)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Park, Young-Il;Kim, Mi-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • The size of various alumina ceramics used in semiconductor and display industry is required to increase with increase in wafer and panel size. In this research, large alumina ceramics were fabricated by uniaxial pressing, cold isostatic pressing and filter pressing with commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The large alumina ceramics exhibited dense microstructure corresponding to 98.5% of theoretical density and 99.8% of high purity. The impurities and microstructural defects of the alumina were found to influence the resistance and dielectric properties. The volume resistances in these four aluminas were almost the same while the pure alumina was higher value. The dielectric constant, dielectric loss and dielectric strength of aluminas were placed within the range of 10.3~11.5, 0.018~0.036, and 10.1~12.4 kV/mm, respectively.

Preparation and Luminescence Properties of Y(P,V)O4:Eu3+ Phosphor using Impregnation Method (함침법에 의한 Y(P,V)O4:Eu3+ 형광체의 합성 및 발광특성)

  • Han, Cheong-Hwa;Kim, Soo-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.565-570
    • /
    • 2011
  • The $Eu^{3+}$ doped $Y(P_x,V_{1-x})O_4$ (0 ${\leq}$ x ${\leq}$ 1) phosphors were synthesized by solid-state and impregnation method and investigated as potential red-emitting phosphors for a plasma display panel(PDP). The optimal substitution proportion of P for V was determined to be 60 mol%, for $Y(P_x,V_{1-x})O_4$ doped with 8 mol% $Eu^{3+}$. The VUV PL spectra and SEM for the synthesized phosphors were measured and compared against those of a commercial red-emission phosphor. The $Y(P_x,V_{1-x})O_4$:$Eu^{3+}$ phosphors exhibited strong red at around 592, 618 and 698 nm. The emission intensity and particle size of the phosphors were controlled by preparation conditions.

Nanoparticle Phosphors Synthesized by Inductively Controlled Plasma Process for Plasma Based Display

  • Yang, Choong-Jin;Park, Jong-Il;Choi, Seung-Dueg;Park, Eon-Byeong;Lee, Young-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.380-386
    • /
    • 2008
  • Optimized volume production of nanoscale phosphor powders synthesized by radio frequency (RF) plasma process was developed for the application to plasma display panels. The nano powders were synthesized by feeding the both solid and liquid type precursors, and nanoparticle phosphors were characterized in terms of particle size, shape, and photoluminescence (PL) intensities. Computer simulation was performed in advance to determine the process parameters, and nano phosphors were evaluated by comparing with current commercial micron-sized phosphor powders. Practical feeding of both solid and liquid type precursor was proved to be effective for volume production.The developed process showed a potential as a production method for red, blue and green phosphor although the PL intensity still needs further improvement.

Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target (Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장)

  • Yu, Meng;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

Engineering Properties of Cement Composite Panel for Outer Wall Depending on the Types and Combinations of Insulation Materials (단열소재 종류 및 조합에 따른 외벽단열 패널용 시멘트 복합체의 공학적 특성)

  • Han, Min-Cheol;Cho, Byoung-Young;Lee, Gun-Cheol;Noh, Sang-Kyun;Jeon, Kyu-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2011
  • In this study, the engineering characteristics of outer wall insulation panels according to type of insulation materials, their combination, and the contents of insulation materials were tested. Vermiculate, ceramic bead, perlite and expanded polystyrene were used as insulation materials. Flexural strength and thermal conductivity depending on the insulation materials used were measured. It was found that the flow of fresh mortar significantly decreased with an increase in the contents of insulation materials. In terms of the effect of insulation materials on thermal conductivity, an increase in insulation materials resulted in a decrease of thermal conductivity. In particular, PL and EPS, when used together, have lower thermal conductivity than other materials. Regarding the flexural strength of the hardened mortar, the strength showed a tendency to gradually decrease according to the increase in contents of insulation materials, compared to that of the plain mortar. In terms of the flexural strength depending on various types of insulation materials and its combination, it was found that the flexural strength of cement mortar containing 3% of vermiculate(V)+ceramic bead(CB)+perlite(PL) was the highest among the specimens tested.

Impact Damage of Honeycomb Sandwich Antenna Structures (통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구)

  • Kim, Cha-Gyeom;Lee, Ra-Mi;Park, Hyeon-Cheol;Hwang, Un-Bong;Park, Wi-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.387-398
    • /
    • 2002
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/㎥. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although the former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern. It was revealed that the performance of antenna was related to the impact damage and there was a threshold that the performance of antenna fell as impact energy level changed. The threshold was between the impact energies of 1.5J and 1.75J.

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.

The Effects of Composition on the Interface Resistance in Bi-System Glass Frit (Bi 계열 Glass Frit 조성이 계면저항에 미치는 영향)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.858-862
    • /
    • 2013
  • The front electrode should be used to make solar cell panel so as to collect electron. The front electrode is used by paste type, printed on the Si-solar cell wafer and sintered at about $800^{\circ}C$. The paste is composed Ag powder and glass frit which make the ohmic contact between Ag electrode and n-type semiconductor layer. From the previous study, the Ag electrodes which used two commercial glass frit of Bi-system were so different on the interface resistance. The main composition of them was Bi-Zn-B-Si-O and few additives added in one of them. In this study, glass frit was made with the ratio of $Bi_2O_3$ and ZnO on the main composition, and then paste using glass frit was prepared respectively. And, also, the paste using the glass frit added oxide additives were prepared. The change of interface resistance was not large with the ratio of $Bi_2O_3$ and ZnO. In the case of G6 glass frit, 78 wt% $Bi_2O_3$ addition, the interface resistance was $190{\Omega}$ and most low. In the glass frit added oxide, the case of Ca increased over 10 times than it of G6 glass frit on the interface resistance. It was thaught that after sintering, Ca added glass frit was not flowed to the interface between Ag electrode and wafer but was in the Ag electrode.

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.