• Title/Summary/Keyword: ceramic nanoparticles

Search Result 192, Processing Time 0.023 seconds

Applicability of low pressure membranes for wastewater treatment with cost study analyses

  • Maddah, Hisham A.;Chogle, Aman M.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.477-488
    • /
    • 2015
  • This study demonstrates that low pressure membranes are the ideal choice for industrial and/or municipal wastewater treatment by showing some promising experimental results, understanding different membrane filtration models, studying the potential of membrane bioreactors (MBRs), considering ceramic membranes fabrication and illustrating the role of nanotechnology in membranes. Cost study calculations are included to determine the treatment cost as well as the initial cost of various membrane types. Results showed that integrated membranes are preferred over MBR in case of average capacities. However, higher capacity situations are the most economical choice for MBR. It is shown that the least treatment cost in MBR was about $0.13/m^3$. However, the $0.13/m^3$ is the theoretical cost which is very small compared to the actual average MBR treatment cost of $0.5/m^3$.

Effect of oxygen working pressure on morphology and luminescence properties of SnO2 micro/nanocrystals formed by thermal evaporation method

  • Kim, Min-Sung
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.424-427
    • /
    • 2018
  • The effect of oxygen pressure in the synthesis of $SnO_2$ micro/nanocrystals through thermal evaporation of Sn powder was investigated. The thermal evaporation process was performed at $1000^{\circ}C$ for 1 hr under various oxygen pressures. The pressure of oxygen changed from 10 to 500 Torr. The morphology of $SnO_2$ crystals changed drastically with oxygen pressure. $SnO_2$ nanoparticles with an average diameter of 120 nm were formed at oxygen pressure lower than 10 Torr. $SnO_2$ nanowires were grown under an oxygen pressure of 100 Torr. The nanowires have diameters in the range of 100 ~ 500 nm and lengths of several tens of micrometers. As increasing the oxygen pressure to 500 Torr, the sizes of wires increased. A strong visible emission peak centered at about 500 ~ 600 nm was observed in the room temperature cathodoluminescence spectra of all the products.

Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction

  • Kim, Tae-Hyun;Sang, Byoung-In;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.499-503
    • /
    • 2018
  • In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.

Synthesis of Spindle Shape α-FeOOH Nanoparticle from Ferrous(II) Sulfate Salt (황산 제1철을 이용한 방추형 괴타이트 나노 입자의 합성)

  • Han, Yang-Su;You, Hee-Joun;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.722-728
    • /
    • 2005
  • A wet-chemical route was utilized to obtain nanosized crystalline goethite ($\alpha$-FeOOH) particle, which was known as an oxidation catalyst in reducing carbon monoxide (CO) and dioxine during incineration. A cost-effective $FeSO_4{\cdot}7H_2O$ was used as starting raw material and a successive process of hydrolysis-oxidation was utilized as synthetic method. The effects of the initial $Fe^{2+}$ concentration, hydrolysis time and oxidation period on the crystalline phase and particle characteristics were systematically investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and BET analyses. It was found that the spindle-shaped crystalline $\alpha$-FeOOH particle with the width of 70 nm and the length of 200 nm could be obtained successfully when the initial concentration of 1.5 M, hydrolysis time of 4h, and oxidation period of 10 h, respectively. In addition, it was observed that the spindle-shaped $\alpha$-FeOOH particle consisted of nano-sized primary crystallites of $30\~50\;nm$, which were de-agglomerated into individual particle and successively re­agglomerated into spherical or irregular-shaped agglomerates beyond certain periods in the hydrolysis and oxidation process.

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.

Syntheses and Characterizations of Polymer-Ceramic Composites Having Increased Hydrophilicity, Air-Permeability, and Anti-Fungal Property (친수성, 통기성 및 항균성이 향상된 고분자-세라믹 복합소재의 제조 및 물성)

  • Cho, Hyung-Joon;Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.137-141
    • /
    • 2010
  • Generally, polymer materials are not air-permeable and hydrophilic. In addition, they do not possess anti-fungal property. Hydrophilicity, air-permeability, and anti-fungal properties of new composites consisting of polymer, ceramic nanoparticles, and silver ion were investigated by contact angle measurements, air permeation time, and cell culture. The hydrophilic, air-permeable, and anti-fungal composites can be used in health care industry.

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.

Hydrothermal Synthesis, Characterization and Improved Activity of a Visible-Light-Driven ZnSe-Sensitized TiO2 Composite Photocatalyst

  • Zhu, Lei;Peng, Mei-Mei;Cho, Kwang Youn;Ye, Shu;Sarkar, Sourav;Ullah, Kefayat;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.504-509
    • /
    • 2013
  • In this study, ZnSe-$TiO_2$ composites were synthesized by a facile hydrothermal-assisted sol-gel process and characterized by nitrogen adsorption isotherms (77 K), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometry. The photocatalytic activity was investigated by decoloration methylene blue (MB), methyl orange (MO), and rhodamine B (Rh.B) in an aqueous solution under visible light irradiation. The results revealed that the photocatalytic activity of the ZnSe-$TiO_2$ photocatalyst was much higher than that of pure$TiO_2$. The ZnSe nanoparticles, which act as a photosensitizer, not only extend the spectral response of $TiO_2$ to the visible region but also reduce charge recombinations.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).