• Title/Summary/Keyword: ceramic interface

Search Result 449, Processing Time 0.022 seconds

플렉서블 유기발광 디스플레이 개발 동향

  • Kim, Hyeong-Sik;Lee, Gwan-Hyeong
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.4-11
    • /
    • 2018
  • Display is an essence in human-machine communication interface. As mobile environment such as internet of things (IOT) and Artificial Intelligence (AI) progress, importance of display increases. Here we review research trend in flexible organic light emitting displays (OLEDs). This review article covers all the components consisting of flexible OELDs and shows direction of the recent research. This paper would be helpful for readers and researchers working in this field and provide perspective for future displays.

Study on Properties of Natural Adhesives with Lacquer for Ceramic Conservation (옻을 활용한 토기 복원용 천연 접착재료의 특성 연구)

  • Jeong, Se Ri;Kim, Eun Kyung;Yu, Jae Eun
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.111-116
    • /
    • 2011
  • The characteristics of natural resin, sap of the lacquer tree were examined as an adhesive for the ceramic conservation since it has such outstanding properties like corrosion resistance against acid and alkali, heat-resistance, waterproof, antiseptic and protection against insects. In order to utilize raw lacquer as an adhesive not under the hardening conditions of lacquer like high humidity (RH 75 to 85%) and high temperature (120 to $170^{\circ}C$), but under normal condition, isinglass and animal glue were added to raw lacquer at certain ratio. In addition, the viscosity and the drying time were measured and their possibilities of application were also investigated through measurement of tensile and adhesive strength. As a result of experiment, it was possible to dry at room temperature and RH $50{\pm}5%$ to mix with raw lacquer and glue, and the drying time of sample with animal glue was faster than that of isinglass. Furthermore, the adhesion of sample with glue was increased more than raw lacquer. It seems to be possible to use the environmental friendly traditional adhesive for the ceramic conservation and restoration, if there are studies or examinations of safety of applications on objects and weathering resistance.

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF

The effect of powder characteristics on the behavior of Co-firing of ferrite and varistor (Ferrite/varistor의 동시소성 거동에 대한 분체특성의 영향)

  • Han, Ik-Hyun;Lee, Yong-Hyun;Myoung, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2007
  • A number of process problems should be solved in the multi-layered ceramic devices such as EMI filter. In particular, it is essential to control the sintering shrinkage in co-firing of different materials for obtaining defect-free samples such as crack, camber, and delamination which usually occur near the surface and interface. We studied the effect of the powder properties of ferrite on the co-firing behavior of green ceramic layers composed of ferrite and varistor. Three kind of ferrite powder samples as a function of milling time (24, 48, and 72 hr) were prepared. Varistor and ferrite ceramic green sheet were made by means of doctor blade process using slurry (ceramic powder and binder solution). Here, slurry was prepared by mixing 55 wt% powder with 45wt% binder solution. Varistor and ferrite green sheets were laminated at $80 kg/cm^2$, and co-fired at $900^{\circ}C$ and $1000^{\circ}C$ for 3 hr. We obtained the camber-free and co-fired ferrite/varistor layer structure by controlling the milling time and sintering temperature.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Effect of TiO2 on the Properties of ZnO-V2O5-P2O5 Low Temperature Sealing Glasses (저온실링용 ZnO-V2O5-P2O5계 봉착재의 물성에 미치는 TiO2 의 영향)

  • Lee, Heon-Seok;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Lee, Suk-Hwa;Kim, Il-Won;Kim, Nam-Suk;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.613-618
    • /
    • 2009
  • We designed new compositions for lead free and low temperature sealing glass frit of $ZnO-V_2O_5-P_2O_5$ system, which can be used for PDP (Plasma Display Panel) or other electronic devices. The $ZnO-V_2O_5-P_2O_5$ system can be used as a sealing material at temperatures even lower than 430$^{\circ}C$. This system, however, showed lower bonding strength with glass substrate compared to commercialized Pb based sealing materials. So, we added $TiO_2$ as a promoter for bonding strength. We examined the effect of $TiO_2$ addition on sealing behaviors of $ZnO-V_2O_5-P_2O_5$ glasses with the data for flow button, wetting angle, temporary & permanent residual stress of glass substrate, EPMA analysis of interface between sealing materials and glass substrate, and bonding strength. As a result, sealing characteristics of $ZnO-V_2O_5-P_2O_5$ system glasses were improved with $TiO_2$ addition, but showed a maximum value at 5 mol% $TiO_2$ addition. The reason for improved bonding characteristics was considered to be the chemical interaction between glass substrate and sealing glass, and structural densification of sealing glass itself.

Microstructure and Microwave Dielectric Properties of Glass $(La_2O_3-B_2O_3-TiO_2)$/Ceramic Composites ($(La_2O_3-B_2O_3-TiO_2)$ 세라믹 조성에서의 미세 조직 과 마이크로 유전체 특성)

  • Jung, Byung-Hae;Hwang, Seong-Jin;Han, Tae-Hee;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.138-138
    • /
    • 2003
  • Low temperature co-fired ceramic (LTCC) technology offers significant benefits over the other established packaging technologies for high density, high microwave frequency, and fast signal application. Most conventional electroceraramics do not meet the basic requirements in respect of sinterability for LTCC technology. Attention is, therefore, focused on the role of glasses because of the capability they supply with lower sintering temperatures. In this study, commercial ceramic (MBRT-90) in the system BaO-N $d_2$ $O_3$-Ti $O_2$ (BNT: 40 ~ 80 wt%) and L $a_2$ $O_3$- $B_2$ $O_3$-Ti $O_2$ glass (LBT;60 ~ 20 wt%) were prepared. These glass/ceramic composites were evaluated for sintering behavior, phase evaluation, densities, interface reaction, crystallinity, microstructure and microwave dielectric properties. It was found that the addition LBT glass frits significantly lowered the sintering temperature to below 90$0^{\circ}C$ and as temperature increased (750~90$0^{\circ}C$) densification developed dynamically which was meant to be as over 95% of relative density. It is supposed that in the microstructure, the grain size was increased accompanying with the formation of different phases such as LaB $O_3$ and Ti $O_2$ under the condition of increasing sintering temperature. The sintered bodies represented applicable dielectric properties, namely 20 ~ 40 for $\varepsilon_{{\gamma}}$, ~ 10000 GHz for Q* $f_{0}$ and 10~80 ppm/$^{\circ}C$ for $\tau$$_{f}$. The results suggest that the composite is one of feasible candidates for the microwave use in LTCC technology.y.e use in LTCC technology.y.

  • PDF

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.

The Electrical Characteristics of Ceramic Capacitor for High Voltage (고전압용 세라믹 커패시터의 전기적 특성)

  • 홍경진;김태성
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • The ceramic capacitor was fabricated by $(Ba_{0.85}Ca_(0.15)TiO_3+ZnO$ + ZnO(from 0.1 to 0.4 mol ratio). The electrical and structural properties of ceramic capacitor for high voltage application was studied in this study. The relative rensity of ceramics capacitor has shown high in all specimen. The grain was a small size from $1.0[\mum]$ to $1.22[\mum]$ and it was increased with ZnO at 0.3 mol ratio. It was stabilized that the temperature coefficient of ceramic capacitor to change temperature had below 100[ppm] at 0.12~10[kHz]. The dielectric reIaxation time was decreased by interface polarization over $110[^{\circ}C]$ and it was increased by space polarization of paraelectric layer below $110[^{\circ}C]$. The insulating layer was increased with ZnO and dielectric constant to voltage was stabilized by 0.1[%].0.1[%].

  • PDF

Influence of SiO2 Content on Wet-foam Stability for Creation of Porous Ceramics

  • Bhaskar, Subhasree;Park, Jung Gyu;Cho, Gae Hyung;Seo, Dong Nam;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.511-515
    • /
    • 2014
  • The thermodynamic instability of bubbles in wet-foam colloidal suspension is due to the substantial area of their gas/liquid interface. Several physical processes lead to gas diffusion from smaller to larger bubbles, resulting in a coarsening and Ostwald ripening of wet foam. This includes a narrowing of the bubble size distribution. The distribution and microstructure of porous ceramics, the adsorption free energy and Laplace pressure of $Al_2O_3$ particle-stabilized colloidal suspension, and $SiO_2$ content were investigated for tailoring the bubble size. Wet-foam stability of more than 80% is related to the degree of hydrophobicity with contact angles of $62-70^{\circ}$ achieved from the surfactant. The contact angle replaces part of the highly energetic interface and lowers the free energy of the system. This leads to an apparent increase in the surface tension (26-33 mN/m) of the colloidal suspension.