• 제목/요약/키워드: ceramic heater

검색결과 70건 처리시간 0.032초

적외선 온도 카메라를 이용한 분할형 전기히터 가열 및 유동 조건에 따른 전기히터와 매연필터 표면에서의 온도 분포에 관한 연구 (A Study on the Temperature Distribution at the Surface of Diesel Particulate Filter and Partitioned Electric Heater according to the Conditions of Heating and Flow using an Infrared Temperature Camera)

  • 이충근;박성천
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.7-14
    • /
    • 2008
  • The temperature distribution in a surface of diesel particulate filter(DPF) was measured using an infrared temperature camera. In order to regenerate the DPF, five partitioned electric heaters were used for heating the ceramic filter. The five partitioned heaters were switched on/off with some time interval one the other. The surface temperature distribution in the ceramic filter and electric heaters were measured with varying both the electrical power supply to the heaters and the mass flow rate of the air supply from a blower. The higher mass flow rate in the DPF system enhanced the uniformity in the surface temperature distribution of the ceramic filter due to effective convection heat transfer. The flow in the monolith ceramic structure of the DPF move mainly in the axial direction, which could be identified from the surface temperature of the ceramic filter.

ZrO2가 코디어라이트-뮬라이트 세라믹스의 기계적 강도 및 내열충격성에 미치는 영향 (Effects of ZrO2 Addition on Mechanical Strength and Thermal Shock Resistance of Cordierite-Mullite Ceramics)

  • 임진현;김시연;여동훈;신효순;정대용
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.719-724
    • /
    • 2018
  • Cordierite composed of an alumina-silica-magnesia compound has a low coefficient of thermal expansion(CTE) and excellent thermal shock resistance. It also has a low dielectric constant and high electrical insulation. However, due to low mechanical strength, it is limited for use in a ceramic heater. In this study, $ZrO_2$ is added to an 80 wt% cordierite-20 wt% mullite composition, and the effect of $ZrO_2$ addition on the mechanical strength and thermal shock resistance is investigated. With an increasing addition of $ZrO_2$, cordierite-mullite formed $ZrO_2$, $ZrSiO_4$ and spinel phases. With sintering conducted at $1400^{\circ}C$ with the addition of 5 wt% $ZrO_2$ to 80 wt% cordierite-20 wt% mullite, the most dense microstructure forms along with an excellent mechanical strength with a 3-point flexural strength of 238MPa. When this composition is quenched in water at ${\Delta}T=400^{\circ}C$, the 3-point flexural strength is maintained. Moreover, when this composition is cooled from $800^{\circ}C$ to air, the 3-point flexural strength is maintained even after 100 cycles. In addition, the CTE is measured as $3.00{\times}10^{-6}{\cdot}K^{-1}$ at $1000^{\circ}C$. Therefore, 80 wt% cordierite-20 wt% mullite with 5 wt% $ZrO_2$ is considered to be appropriate as material for a ceramic heater.

Floating Zone법에 의한 LiF 단결정 성장 (Growth of LiF Single Crystal by Floating Zone Method)

  • 오원석;신건철
    • 한국세라믹학회지
    • /
    • 제27권5호
    • /
    • pp.631-637
    • /
    • 1990
  • Lithium fluolide single crystals were grown by a floating zone method, with infrared radiation convergence type heater, which is free of contamination from the crucible wall. The crystals grown by this apparatus are 5cm in length and 5-6mm in diameter. The grown cryatal was examined by an optical microscope, XRD, Laue camera, Vickers hardness tester, and FTIR.

  • PDF

전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석 (Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device)

  • 쑨휘;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.

알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성 (Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate)

  • 이성환;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.39-46
    • /
    • 2017
  • 본 연구는 평판형 히터용 금속방열판상의 세라믹 절연층 제조, 즉 절연성 금속기판에 관한 것이다. 반도체나 디스플레이의 열처리 공정 등에 사용되는 평판형 히터를 제조함에 있어서, 온도 균일도를 높이기 위해 금속 방열판으로서 열전도율이 높고, 비교적 가벼우며, 가공성 좋은 알루미늄 합금 기판이 선호된다. 이 알루미늄 기판에 발열 회로 패턴을 형성하기 위해서는 금속 기판에 절연층으로서 고온 안정성이 우수한 세라믹 유전체막을 코팅하여야 한다. 금속 기판상에 세라믹 절연층을 형성함에 있어서 가장 빈번히 발생하는 첫 번째 문제는 금속과 세라믹의 이종재료 간의 큰 열팽창계수 차이와 약한 결합력에 의한 층간박리 및 균열발생이다. 두 번째 문제는 절연층의 소재 및 구조적 결함에 따른 절연파괴이다. 본 연구에서는 이러한 문제점 해소를 위해 금속소재 기판과 세라믹 절연층 사이에 완충층을 도입하여 이들 간의 기계적 매칭과 접합력 개선을 도모하였고, 다중코팅 방법을 적용하여 절연막의 품질과 내전압 특성을 개선하고자 하였다.

디젤기관에서 전기 히터 재생 여과 트랩의 특성에 관한 연구 (A Study on Characteristics of Electric Heater Regeneration Filter Trap in Diesel Engine)

  • 류규현;박만재
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.10-15
    • /
    • 2001
  • Urgent increasing of the vehicles influence air pollution and the damage of the plants and animals. Particularly, exhaust-ing particulate of diesel vehicles give serious effect to human life. Therefore, this study aim to reduce amount of particulate and to contribute developing after-treatment in diesel engine. Through the experimental and theoretical study about charac-teristics of the electric heat regeneration, various results are obtained.

  • PDF

고장 분석과 가속 수명시험을 통한 PTC 히터의 신뢰성 평가 (Reliability Evaluation on PTC Heater Using Accelerated Life Test and Failure Analysis)

  • 최형석
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.843-846
    • /
    • 2015
  • In this paper, the failure mechanism of PTC heater were examined closely by failure analysis and based on it, accelerated life test were conducted. Finally, life distribution and acceleration model were established. The failure mechanism of PTC heater such as crack, increase of resistance due to heating were identified. Two acceleration factors such as temperature, humidity were chosen with two levels each and accelerated life test were done. Life distribution were identified as Weibull distribution with shape parameter 5.4 and Temperature-Humidity model was fitted as an acceleration model.

방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발 (Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering)

  • 신용덕;최원석;고태헌;이정훈;주진영
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

디젤 차량의 보조 난방을 위한 PTC 히터 개발 (Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle)

  • 신윤혁;김성철
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.666-671
    • /
    • 2014
  • 최근 디젤 차량과 같은 내연기관의 고효율화에 따라, 보조난방 열원으로서 PTC 히터의 사용이 증가하는 추세이다. 디젤 차량의 시동 초기에는 냉각수의 온도가 난방으로 직접 사용하기에 충분히 높지 않으므로, 동절기 난방을 위해 보조난방 열원은 필수적이다. 본 연구에서는 스크린 인쇄 전극공정을 바탕으로 한 PTC 소자를 제작하였고, 이를 활용한 PTC 소자 모듈 및 히터를 설계 및 제작하였다. PTC 소자 모듈의 방열핀 접촉형상 및 전열소자의 크기 변경에 따른 난방성능 변화를 열유동 해석을 통해 분석하였고, 난방성능 실험을 수행하여 PTC 히터의 난방성능 및 효율 특성을 살펴보았다. PTC 히터 시작품의 경우, 기존 PTC 히터와 동등한 수준 이상의 난방성능 및 효율을 나타내었으며, 향후 이를 바탕으로 PTC 소자와 히터에 대한 공정개선 및 성능증대 연구를 수행할 계획이다.

Sapphire 결정성장 (Crystal Growth of Sapphire)

  • 최종건;오근호
    • 한국세라믹학회지
    • /
    • 제23권1호
    • /
    • pp.21-26
    • /
    • 1986
  • By the floating zone method with infrared radiation convergence type heater homogeneously $Cr^{3+}$ doped alu-mina single crystal was obtained. And sizx {1010} facets appeared at the surface of [0001] grown crystals. $ZrO_2$ and $HfO_2$ precipitated as secondary phase and were not doped in the crystals. We found that the dist-ribution of the secondary phase which was mainly located at the surface and the peripheral region was closely related to the flow pattern of melt zone.

  • PDF