• Title/Summary/Keyword: ceramic heater

Search Result 70, Processing Time 0.027 seconds

Measurement of Temperature Distribution in the Infrared Panel Heater (적외선 패널히터의 온도분포 측정)

  • Lee, Kong-Hoon;Ha, Su-Seok;Kim, Ook-Joong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1178-1183
    • /
    • 2004
  • Temperature distribution and heating characteristic of the panel heater for infrared heating have been investigated. The temperature variation with time is firstly measured with the thermocouple to figure out the response time of the heater to the power input. The heater reaches faster to the steady state in comparison to the ceramic heater. The infrared thermal imaging system is utilized to investigate the temperature distribution over the heater surface. The measured thermal images show that the thermal boundary layer induced by the free convection near the heater surface affects the temperature distribution on the surface. The images also show the fairly good uniformity of the temperature distribution in the core region of the surface.

  • PDF

Design and Verification of Ceramic Heating Element-based Tankless Instant Electric Water Heater (세라믹 발열체기반 비저장식 순간 전기 온수기 개발 및 검증)

  • Ahn, Sung-Su;Kim, Woo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.151-159
    • /
    • 2016
  • This paper proposes a ceramic heating element-based tankless instant electric water heater for hand/face washing that does not require a lot of hot water. The heating module, which heats the input water and outputs hot water, operates the ceramic heating element detecting input water using a flow sensor. Inside of the heating module is designed to form one flow path in order to get almost $15^{\circ}C$ increased heated water compared to the input water temperature within 2 second after 1.5 liter per minute water supply. The design validity is verified using a heat flow analysis of the water flow and temperature variations inside of the heating module also. Based on the design data, the heating module is constructed including a single rod-type ceramic heating element. After that, a prototype system having temperature setting function by three steps were constructed. The prototype system is connected to a 1.5 liter per minute water supply line, and the water output temperature and time measurement experiments confirmed that the proposed system output the heated water increased by $18.3^{\circ}C$ in case of third step setting within 2 second after water supply. And standby power is under 1 W and peak power does not exceed the permissible range for the general house usage. Several performance results verify that the proposed tankless instant electric water heater is applicable for the washstand of the house, highway rest area and factory so on as winter-time hand/face washing.

Study on Temperature Distributions in a Diesel Particulate Filter Equipped with Partitioned Electric Heaters (분할형 전기히터가 장착된 디젤 매연 필터 내의 온도분포에 관한 연구)

  • Park, Sung-Cheon;Lee, Choong-Hoon;Lee, Su-Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • The temperature distribution of diesel particulate filter with five partitioned electric heaters is numerically analyzed to investigate the condition of regenerating ceramic filter. The commercial code STAR-$CCM+^{(R)}$ is utilized to simulate multi-dimensional steady hot air flow in DPF. In order to verify the computational results, thermocouples are used to measure the temperature distribution in DPF. Computational results agree well with experimental ones. The results show that the maximum temperature in DPF is lowered as the mass flow rate of exhaust gas increases, which means that the more power in heater will be necessary as the engine speed increases. Compared with heater placed at center, heater at circumference has the higher maximum temperature in DPF. The maldistribution of flow field in front of heater has the main influence on the temperature distribution in DPF.