• Title/Summary/Keyword: ceramic composite

Search Result 1,342, Processing Time 0.024 seconds

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Structural and Magnetic Properties of (CoFe2O4)0.5(Y3Fe5O12)0.5 Powder

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae;Lee, Sung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.80-83
    • /
    • 2005
  • Cobalt ferrite and garnet powders were grown using a conventional ceramic method in two different ways for understanding the magnetic interaction between structurally different materials. Structures of these powders were investigated by using an X-ray diffractometer (XRD) and the magnetic interaction between iron ions and the magnetic properties of the powders were measured by a $M\ddot{o}ssbauer$ spectroscopy and a vibrating sample magnetometer (VSM), respectively. The result of the XRD measurement showed that the annealing temperature higher than $1200^{\circ}C$ was necessary to grow a $(CoFe_2O_4)_{0.5}(Y_3Fe_5O_{12})_{0.5}$ powder. $M\ddot{o}ssbauer$ spectra for the powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the magnetic interaction between the grain surface of cobalt ferrite and the one of the garnet. In case of annealing the powders at the temperature large enough to crystallize them, raw chemicals became fine cobalt ferrite and garnet particles at first and then these fine particles were aggregated and formed large grains of ferrite powders. The result of the VSM measurement showed that the powders prepared at $1200^{\circ}C$ had the similar saturation magnetization and the coercivity regardless of the preparation method.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Nanocellulose-based Polymer Composites with Their Properties and Applications (나노셀룰로오스 기반 고분자 복합소재의 특성 및 응용)

  • Se Hun Kim;Young Jae Kwon;Yamini Sharma;MinYoung Shon;Sangho Cho;Kyung-Youl Baek;Kie Yong Cho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-225
    • /
    • 2023
  • Celluloses are naturally occurring polymers that can be easily obtained from various natural sources. Nanocellulose, a form of cellulose, can be derived from regular cellulose and has unique properties that make it ideal for multiple industrial applications. Nanocellulose is a renewable, sustainable, and eco-friendly composite material with exceptional mechanical properties and thermal stability, surpassing metal and ceramic composites. As a result, nanocelluloses are being extensively studied for their potential applications, including fillers, packaging, energy, medicine, and coatings. This review aims to summarize the current research on nanocelluloses and their applications.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Experimental Investigation of Characteristics Change by Kerf-Fill Material between Arrayed Elements of a Piezoelectric Transducer (압전 배열 트랜스듀서의 진동 요소간 kerf 충진 매질에 따른 특성변화의 실험적 고찰)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.215-220
    • /
    • 2008
  • The kerfs between arrayed piezoelectric elements in a medical ultrasonic transducer or a piezoelectric composite transducer are generally filled by polymeric materials. The boundary condition of the elements for lateral mode vibration is changed according to the kerf-filling materials, so that the resonance frequency for longitudinal mode of the transducer is also varied. In this study, to investigate the resonance frequency variation for an arrayed transducer experimentally, the piezoelectric vibration elements of $14mm{\times}0.22mm{\times}0.44mm$ were fabricated and those were linearly arrayed. And, the resonance frequencies were measured for three cases of kerf-filling condition, non-filling and two different kinds of epoxy filling. Conclusively, it is confirmed that the resonant frequency variation shows the similar tendency with the theoretical one for the longitudinal mode.

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.