• Title/Summary/Keyword: cepacidine A

Search Result 3, Processing Time 0.015 seconds

Immunosuppressive Activity of Cepacidine A, a Novel Antifungal Antibiotic Produced by Pseudomonas cepacia

  • LEE, CHUL-HOON;JUNG-WOO SUH;YOUL-HEE CHO
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.672-674
    • /
    • 1999
  • Cepacidine A was first identified as a novel antifungal antibiotic which was isolated from the culture broth of Pseudomonas cepacia AF200l. It showed a potent in vitro antifungal activity against various pathogenic fungi, but did not show any activity against bacteria. Recently, the immunosuppressive action of cepacidine A was discovered using an in vitro screening system involving inhibition of the proliferation of murine lymphocytes stimulated by 2 mitogens, and also by in vivo mouse models involving inhibition of delayed type hypersensitivity and SRBC hemagglutination. Cepacidine A showed a significant activity of cellular immunosuppression (ED/sub 50/) at concentration levels of 1-3 ㎎/㎏, i.p.. Unfortunately, the delayed toxicity at a dose of above 3 ㎎/㎏ i.p. was apparent.

  • PDF

Biological and Physico-chemical Properties of Antifungal Cyclic Lipopeptides Produced by Pseudomonas cepacia Strains (Pseudomonas cepacia 균주가 생산하는 항진균성 Cyclic Lipopeptide의 생물학적 및 물리 화학적 특성)

  • Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.310-321
    • /
    • 1996
  • Five strains AF027, AF069, AF2001, AF2011 and SD02 of Pseudomonas cepacia were isolated from soil, and the antifungal cyclic lipopeptides(CLP) i.e, CLP027A, CLP069A, Cepacidine A, CLP2011A and CLP02A were produced from each strains, respectively. Nitrogen and carbon sources in media were proved to be important factors for the production of CLP and among them, polypeptone-S, glucose and fructose were the most effective. It appeared that compounds CLP027A and CLP069A were identical with Cepacidine A and Xylocandine A, respectively. contain aspartic acid as amino acid component, are differentiated from Xylocandine A containing asparagine. Although molecular weight, amino acid composition and UV spectrum of CLP2011A and CLP02A are same with those of Cepacidine A, it is postulated that these compounds are not identical with Cepacidine A when the antifungal spectra and antifungal activity were compared to those of Cepacidine A.

  • PDF

Biocontrol Activity of Pseudomonas cepacia AF2001 and Anthelmintic Activity of Its Novel Metabolite, Cepacidine A

  • Lee, Chul-Hoon;Kempf, Hans-Joachim;Lim, Yoong-Ho;Cho, Youl-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.568-571
    • /
    • 2000
  • Cepacidine A was previously isolated as a novel antifungal antibiotic from the culture broth of Pseudomonas cepacia AF2001. It exhibits a potent in vitro antifungal activity against various plant pathogenic fungi, such as Plasmopora veticola on grapes, Septoria nodorum and Fusarium culmorum on wheat, as well as Colletotrichum lagenarium on cucumbers. Accordingly, this study was conducted to evaluate the potential crop protection activity of strain P. cepacia AF2001. The strain was tested in semi-greenhouse biocontrol assays, and showed an excellent biological activity against Pythium ultimum in cotton and cucumbers; however, only a minor activity against Rhizoctonia aolani in cotton was observed. Furthermore, the nematodes Haemonchus contortus and Trichostrongylus only exhibited a moderated activity in the in vitro larval development assay with no activity in the in vivo animal model.

  • PDF