• Title/Summary/Keyword: centroid classifier

Search Result 15, Processing Time 0.018 seconds

Vocabulary Expansion Technique for Advertisement Classification

  • Jung, Jin-Yong;Lee, Jung-Hyun;Ha, Jong-Woo;Lee, Sang-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1373-1387
    • /
    • 2012
  • Contextual advertising is an important revenue source for major service providers on the Web. Ads classification is one of main tasks in contextual advertising, and it is used to retrieve semantically relevant ads with respect to the content of web pages. However, it is difficult for traditional text classification methods to achieve satisfactory performance in ads classification due to scarce term features in ads. In this paper, we propose a novel ads classification method that handles the lack of term features for classifying ads with short text. The proposed method utilizes a vocabulary expansion technique using semantic associations among terms learned from large-scale search query logs. The evaluation results show that our methodology achieves 4.0% ~ 9.7% improvements in terms of the hierarchical f-measure over the baseline classifiers without vocabulary expansion.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

Real Time Environmental Classification Algorithm Using Neural Network for Hearing Aids (인공 신경망을 이용한 보청기용 실시간 환경분류 알고리즘)

  • Seo, Sangwan;Yook, Sunhyun;Nam, Kyoung Won;Han, Jonghee;Kwon, See Youn;Hong, Sung Hwa;Kim, Dongwook;Lee, Sangmin;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Persons with sensorineural hearing impairment have troubles in hearing at noisy environments because of their deteriorated hearing levels and low-spectral resolution of the auditory system and therefore, they use hearing aids to compensate weakened hearing abilities. Various algorithms for hearing loss compensation and environmental noise reduction have been implemented in the hearing aid; however, the performance of these algorithms vary in accordance with external sound situations and therefore, it is important to tune the operation of the hearing aid appropriately in accordance with a wide variety of sound situations. In this study, a sound classification algorithm that can be applied to the hearing aid was suggested. The proposed algorithm can classify the different types of speech situations into four categories: 1) speech-only, 2) noise-only, 3) speech-in-noise, and 4) music-only. The proposed classification algorithm consists of two sub-parts: a feature extractor and a speech situation classifier. The former extracts seven characteristic features - short time energy and zero crossing rate in the time domain; spectral centroid, spectral flux and spectral roll-off in the frequency domain; mel frequency cepstral coefficients and power values of mel bands - from the recent input signals of two microphones, and the latter classifies the current speech situation. The experimental results showed that the proposed algorithm could classify the kinds of speech situations with an accuracy of over 94.4%. Based on these results, we believe that the proposed algorithm can be applied to the hearing aid to improve speech intelligibility in noisy environments.