• Title/Summary/Keyword: centrifugal pump

Search Result 314, Processing Time 0.036 seconds

A Numerical Study on the Effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Jeon, Sang-Gyu;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the effects of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

A Numerical Study on the effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Choi, Young-Seok;Jeon, Sang-Gyu;Yoon, Joon-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.497-502
    • /
    • 2005
  • In this study. the effect of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate. the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

  • PDF

Effect of Volute Area Distributions on the Performance Characteristic Curve of a Centrifugal Pump (볼류트 단면적 변화가 원심펌프의 성능곡선에 미치는 영향)

  • Kim, Deok-Su;Lee, Kyoung-Young;Yoon, Joon-Yong;Choi, Young-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.558-563
    • /
    • 2005
  • In this paper, the effect of volute area distribution on the performance characteristic curve of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequency required. In order to control the shutoff head of a pump, several volute area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the characteristic curve of a centrifugal pump can be controlled by modifying the area distribution with the same volute outlet area.

  • PDF

Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (기액 이상류시의 스크류식 원심펌프의 압력분포)

  • Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF

A Study of Performance Analysis for a Double-Suction Centrifugal Pump (양쪽 흡입 원심펌프의 성능해석에 대한 연구)

  • Chung, Kyung-Nam;Park, Pyun-Goo;Cho, Hyun-Jun;Lee, Sang-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.7-15
    • /
    • 2001
  • Flow analysis was carried out for a double-suction centrifugal pump. Impeller-only models and a full pump model were used to simulate the velocity field and the pressure field of the pump. Heads and efficiencies were calculated with flow rates in order to obtain general performance of the pump. The calculation results were compared to the experimental data, and satisfactory results were obtained. Thus, it may be said that the CFD serves as a useful tool for pump designs.

  • PDF

Improvement of Performance Instability and Miniaturization of Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 불안정성능개선 및 소형화에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • The ratio of disk friction loss in a centrifugal pump is very large for the total pump loss in the range of very low specific speed. Therefore, impeller radius should be shortened to increase the pump efficiency because the disk friction loss is proportional to the fifth power of impeller radius. In order to compensate the decreased head by the shortened impeller radius, vane angle at impeller outlet should be increased. However, as the vane angle at impeller outlet becomes larger, performance instability occurs at low flow rate regions. In this study, J-Groove is adopted to suppress the performance instability and detailed examination is performed for the influence of the J-Groove on the pump performance. The results show that J-Groove gives good effect on the suppression of performance instability. Moreover, as J-Groove increases pump head considerably, the pump size can be smaller for head requirements.

Matching Diffuser Vane with Return Vane Installed in Multistage Centrifugal Pump

  • Kawashima, Daisuke;Kanemoto, Toshiaki;Sakoda, Kazuyuki;Wada, Akihiro;Hara, Takashi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The effects of the diffuser vane on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the interactions among the diffuser vane, the return vane, and the next stage impeller. It is very important to match well the diffuser vane with the return vane, for improving the hydraulic efficiency of the pump. The efficiency may be more improved by making the cross-sectional area of the channel from the diffuser vane outlet to the return vane inlet larger, as much as possible.

Effects of Entrained Air on the Characteristics of a Small Screw-type Centrifugal Pump (공기 흡입이 소형 스크류식 원심펌프의 특성에 미치는 영향)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho;Matsumoto, Yoichiro
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.37-44
    • /
    • 1999
  • In a screw-type centrifugal pump, the pump head deteriorates from single-phase flow to the choke due to an increased air entrainment at a wide tip clearance compared to that of a narrow tip clearance. Moreover, at a narrow tip clearance, the pump head became partially higher in a two-phase flow than that of a single-phase flow near the best efficiency point in low void fraction region. Therefore, we observed the internal flow pattern by using a stroboscope and we measured the mean size of bubbles from the images obtained with a high speed camera. Then, we investigated the influences of the mean size of bubbles, tip clearances and flow patterns on pump performance.

  • PDF

Comparison of Centrifugal Pump Performances for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체의 원심펌프성능특성 비교)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-62
    • /
    • 2004
  • In the current study the effects on pump performances of a conventional centrifugal pump for Newtonian and non-Newtonian fluid were experimentally studied. The study aimed to compare the pump characteristics for Newtonian and non-Newtonian fluid. The working fluids are water, aqueous sugar solution, glycerin solution, muddy solution and pulp solution. The pump characteristics with high viscosity fluids were different. The operating efficiency for the sugar and glycerin solutions were decreased to $8.1\%$ and $12.9\%$ than that of water. The head reductions of the muddy solution for different concentration ratios were decreased to $7.97\%,\;15.11\%$ and $24.87\%$ than that of water And the head reductions of the pulp solution for different concentration ratios were decreased to $11.87\%,\;19.79\%$ md $36.81\%$ than that of water.

  • PDF

The optimum design for rotating shaft centrifugal pump (원심펌프축계의 최적설계)

  • ;;Iwatsubo, T.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 1989
  • This paper presents a method of the optimum design for rotating shaft of centrifugal pump. That is, the object is to optimize the system in stability at the operating speed, unbalance response in the vicinity of the rotor critical speed, leakage flow of the seals. The objective function is composed of these three elements and is minimized by changing seal cleareance, diamoters, and lengths. A typical double suction centrifugal pump is analyzed and its objective function is presented. Then the optimum dimensions of seals are obtained, and vibration characteristics at both initial and optimum conditions are investigated.

  • PDF