• Title/Summary/Keyword: centrifugal infiltration

Search Result 4, Processing Time 0.019 seconds

Centrifugal Infiltration Process of Fibrous Tubular Preform by Al-Cu Alloy

  • Li, Yanhong;Wang, Kai;Su, Yongkang;Hu, Guoxin
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.381-394
    • /
    • 2009
  • The kinetics of centrifugal infiltration of fibrous tubular preform is built theoretically, and simulations are conducted to study the effects of various casting conditions on infiltration kinetics and macrosegregation by combining with the energy, mass and kinetic equations. A similarity way is used to simplify the one-dimensional model and the parameter is ascertained by an iterative method. The results indicate that the increase of superheat, initial preform temperature, porosity tends to enlarge the remelting region and decrease copper solute concentration at the infiltration front. Higher angular velocity leads to smaller remelting region and solute concentration at the tip. The pressure in the infiltrated region increase significantly when the angular velocity is much higher, which requires a stronger preform. It is observed that the pressure distribution is mainly determined by the angular velocity, and the macrosegregation in the centrifugal casting is greatly dependent on the superheat of inlet metal matrix, initial temperature and porosity of the preform, and the angular velocity.

Development of Horizontal Displacement Sensor for Rainfall-simulated Centrifugal Model Test (강우재현 원심모형실험에 적용하기 위한 수평변위 계측장치의 개발)

  • Lee, Chungwon;Park, Sungyong;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.71-77
    • /
    • 2014
  • Heavy rainfall induces many disasters including slope failure and infrastructure collapse. In this point of view, rainfall-simulated centrifugal model test can be a reasonable tool to evaluate the stability of geotechnical structure. In order to obtain the displacements of a model in centrifugal model test, in general, LVDT and laser displacement sensor are used. However, when the rainfall is simulated, the LVDT has the problem of excessive infiltration into the model ground, and the laser displacement sensor provides the measuring result with inaccuracy due to the dispersion of the laser radiation. Hence, in this study, horizontal displacement sensor for rainfall-simulated centrifugal model test was developed. This sensor produced with a thin elastic steel plate and gave the accurate relationship between the displacement and the strain.

Behavior Characteristics of Poorly-Compacted Raised Reservoir Levee with Water Level Raising (다짐시공이 불량한 증고 저수지 제체의 수위상승시 거동)

  • Lee, Chung Won;Kim, Jung Myeon;Moon, Yong Bae;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • This study aims to evaluate the behavior of poorly-compacted raised reservoir levee with water level raising by using centrifugal model test. From the test results, it seems that the hydraulic fracturing at the core of the raised reservoir levee with low degree of compaction possibly occurs due to the drastical increase of pore water pressure by water level raising. Additionally, the continuous infiltration may induce crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. Therefore, reasonable construction management for the compaction of the raised reservoir levee is needed.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.