• Title/Summary/Keyword: central inverter

Search Result 31, Processing Time 0.043 seconds

Frequency Control of an Electronic Ballast of Multiple Power Output for Fluorescent Lamps (주파수제어에 의한 형광램프용 다출력형 전자식 안정기의 설계)

  • 곽재영;송상빈;여인선
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.47-52
    • /
    • 1995
  • This paper presents a new approach in the design of an electronic ballast for fluorescent lamps in the range of 10∼20W. The central point of the design lies in the equivalent concepts for a lamp and for the inverter part of an electronic ballast. The ballast, which adopts half-bridge inverter topology, is designed to adjust ifself to a predefined range of lamp power output by frequency control using MCU. At first, the circuit parameters were estimated using PSpice simulatio, and then were made varied according to the selection of an optimal frequency for each lamp. A series of experiments using fluorescent lamps of 11W, 15W, and 20W were carried out to verify the proposed design. As a result of the experiments, all the three lamps of different kind were run normally with the same ballast under consideration, And the characteristics on lamp starting and light output were satisfactory compared to existen single-output electronic ballasts.

  • PDF

Current Dynamically Predicting Control of PMSM Targeting the Current Vectors

  • Sun, Hexu;Jing, Kai;Dong, Yan;Zheng, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1058-1065
    • /
    • 2015
  • This paper present a current predicting control method for PMSM (permanent magnet synchronous motor) to improve the tracking performance of stator current, which regards the current vector as the control target. Solving the model state equation in the static frame (α-β frame), the dynamic change of current vector will be gained as three independent terms. These change terms, which contain the prediction of current vector, are discretized and simplified by Taylor series expansion and used to get the voltage vector as the predictive control quantity. SVPWM will transform the control voltage to the switching signal of inverter, which is newly deduced for the current vector. Simulation and experiment results are given to testy and verify the performance of this method.

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

A Novel Hybrid Active Power Filter with a High-Voltage Rank

  • Li, Yan;Li, Gang
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.719-728
    • /
    • 2013
  • A novel hybrid active power filter (NHAPF) that can be adopted in high-voltage systems is proposed in this paper. The topological structure and filtering principle of the compensating system is provided and analyzed, respectively. Different controlling strategies are also presented to select the suitable strategy for the compensation system. Based on the selected strategy, the harmonic suppression function is used to analyze the influence of system parameters on the compensating system with MATLAB. Moreover, parameters in the injection branch are designed and analyzed. The performance of the proposed NHAPF in harmonic suppression and reactive power compensation is simulated with PSim. Thereafter, the overall control method is proposed. Simulation analysis and real experiments show that the proposed NHAPF exhibits good harmonic suppression and reactive power compensation. The proposed compensated system is based on the three-phase four-switch inverter, which is inexpensive, and the control method is verified for validity and effectiveness.

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.

Photovoltaic Micro Converter Operated in Boundary Conduction Mode Interfaced with DC Distribution System

  • Seo, Gab-Su;Shin, Jong-Won;Cho, Bo-Hyung;Lee, Kyu-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.44-45
    • /
    • 2011
  • Research on photovoltaic (PV) generation is taking a lot of attention due to its infinity and environment-friendliness with decrease of price per PV cell. While central inverters connect group of PV modules to utility grid in which maximum power point tracking (MPPT) for each module is difficult, micro inverter is attached on each module so that MPPT for individual modules can be easily achieved. Moreover, energy generation and consumption efficiency can be much improved by employing direct current (DC) distribution system. In this paper, a digitally controlled PV micro converter interfacing PV to DC distribution system is proposed. Boundary conduction mode (BCM) is utilized to achieve zero voltage switching (ZVS) of active switch and eliminate reverse recovery problem of passive switch. A 120W prototype boost PV micro converter is implemented to verify the feasibility and experimental results show higher than 98% efficiency at peak power and 97.29% of European efficiency.

  • PDF

Control of Multi-Central Inverter for Large Power Grid-Connected PV System (대용량 PV 시스템용 멀티센트럴 인버터 제어)

  • Ko, Kwang-Soo;Park, Joung-Hyoung;Kim, Heung-Geun;Chun, Tae-Won;Nho, Eui-Chel
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.385-386
    • /
    • 2010
  • 최근 국내 외의 태양광 발전 시스템은 산업화 대용량화 되어가는 추세이다. 태양광 시스템의 인버터에는 태양전지 모듈의 조합에 따라 MIC(Module-Integrated Converter), 스트링, 멀티 스트링, 센트럴, 멀티 센트럴 인버터로 분류된다. 제한하는 멀티 센트럴 방식의 인버터는 상황에 따른 특정 인버터만 구동하거나, 인버터를 개별적으로 운전하여 태양광 발전설비에 대한 시스템의 효율을 높일 수 있다. 또한 인버터의 가동 시간을 동일하게 운전하여 인버터의 사용 수명을 연장하고, 하나의 인버터 고장이나 유지 보수 시 다른 인버터를 높은 에너지로 발전할 수 있어 에너지 손실을 줄일 수 있다는 장점을 갖는다. 본 논문은 PV 어레이와 인버터를 모델링하였고, 제안하는 멀티 센트럴 인버터의 상황별 동작 모드에 따른 시퀀스 제어 기법을 적용하여 시뮬레이션과 실험을 통하여 그 타당성을 검증하였다.

  • PDF

Power Flow Control of PV Hybrid Module System with ESS (에너지 저장 장치가 적용된 태양광 하이브리드 모듈형 시스템의 전력 조류 제어)

  • Lee, Soon-Ryung;Kim, Young-Ho;Jang, Jin-Woo;Choi, Bong-Yeon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.473-474
    • /
    • 2013
  • In this paper, a power flow control of PV hybrid module system with ESS is proposed. Photovoltaic(PV) hybrid module system is consist of individual converter, central inverter, and energy storage system(ESS). Because PV power can be changed in particular hours and environment condition, the power management control for ESS is required. In this paper, the power flow control method for PV hybrid module system with ESS is proposed. The validity of proposed control method is verified by simulations and theoretical analysis.

  • PDF

A Study on Development of Micro Controller for Converter using VHDL (VHDL을 이용한 전력변환용 마이크로 컨트롤러 개발에 관한 연구)

  • Seo, Young-Jo;Oh, Jeong-Eon;Yoon, Jea-Shik;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1071-1073
    • /
    • 2000
  • The use of HDL(Hardware Description Language) is now central to the ASIC(Application Specific Integrated Circuit). HDL-based ASIC can simplify the process of development and has a competition in market because it reduce the consuming time for the design of IC(Integrated circuit) in system level. Therefore, the development of power electronics system on chip (SOC), to design microcontroller and switching logic as one chip, is required extremely for the purpose of having reliability and low cost in power electronics which is based on switching elements. The major application of SOC is variable converter, active filter inverter for induction motor. UPS and power supply with a view to reducing electro-magnetic pollution.

  • PDF

A Study on Winter Season Measurement Results to cope with Dynamic Pricing for the VRF System

  • Kim, Hwan-yong;Kim, Min-seok;Lee, Je-hyeon;Song, Young-hak
    • Architectural research
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2015
  • The dynamic pricing of electricity, where the electricity rate increases in a time zone with a high demand for electricity is typically applied to a building whose power reception capacity is greater than a certain size. This includes the time of use(TOU) electricity pricing in Korea which can induce the effect of reducing the power demand of a building. Meanwhile, a VRF (Variable Refrigerant Flow) system that uses electricity is regarded as one of the typical heating and cooling systems along with central air conditioning (central HVAC) for its easy operation and application to the building. Thus, to reduce power energy and operating costs of a building in which the TOU and VRF systems are applied simultaneously, we suggested a control for changing the indoor temperature setting within the thermal comfort range or limiting the rotational speed of an inverter compressor. In this study, to describe the features of the above-mentioned control and verify its effects, we evaluated the results obtained from the analysis of its operation data. Through the actual measurements in winter operations for 73 days since mid- December 2014, we confirmed a reduction of 10.9% in power energy consumption and 12.2% in operating costs by the new control. Also, a reduction of 13.3% in power energy consumption was identified through a regression analysis.