• 제목/요약/키워드: central feature

검색결과 308건 처리시간 0.023초

중앙 영역의 컬러 특징과 최적화된 빈 수를 이용한 내용기 반 영상검색 (Contend Base Image Retrieval using Color Feature of Central Region and Optimized Comparing Bin)

  • 류은주;송영준;박원배;안재형
    • 정보처리학회논문지B
    • /
    • 제11B권5호
    • /
    • pp.581-586
    • /
    • 2004
  • 본 논문은 중앙 영역에서의 컬러 특징 추출 기법과 추출된 컬러 특징들의 비교 빈(bin)를 최적화한 새로운 내용기반 영상 검색 방법을 제안한다. 인간의 시각적 특징이 중심 객체의 유무에 영향을 받고, 대부분의 영상의 중심 객체는 중앙에 존재한다는 가정 하에 영상의 중앙 영역에서 컬러 특징을 추출한다. 따라서, 배경이 단순한 경우 영상의 전체영역을 특징으로 하여 검색했을 때 배경의 영향에 좌우되는 단점을 극복할 수 있다. 또한 영상의 컬러 특징값은 HSV 컬러 공간으로 변환한 후 16레벨로 양자화를 하여 추출한다. 실험값을 통해 기존의 16개 빈을 모두 비교하여 검색한 경우에 비해 상위 8개 빈만을 가지고 검색한 경우 주관적인 평가와 객관적인 평가 모두 다 좋은 결과를 보인다. 영상 전체를 특징으로 추출한 경우보다 중앙 영역만으로 특징을 추출한 경우 평균 precision이 약 5%정도 좋았다.

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • 제10권4호
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

새로운 독립 요소 해석 방법론에 의한 얼굴 인식 (Face Recognition Using A New Methodology For Independent Component Analysis)

  • 류재흥;고재흥
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.305-309
    • /
    • 2000
  • In this paper, we presents a new methodology for face recognition after analysing conventional ICA(Independent Component Analysis) based approach. In the literature we found that ICA based methods have followed the same procedure without any exception, first PCA(Principal Component Analysis) has been used for feature extraction, next ICA learning method has been applied for feature enhancement in the reduced dimension. However, it is contradiction that features are extracted using higher order moments depend on variance, the second order statistics. It is not considered that a necessary component can be located in the discarded feature space. In the new methodology, features are extracted using the magnitude of kurtosis(4-th order central moment or cumulant). This corresponds to the PCA based feature extraction using eigenvalue(2nd order central moment or variance). The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. ICA methodology is analysed using SVD(Singular Value Decomposition). PCA does whitening and noise reduction. ICA performs the feature extraction. Simulation results show the effectiveness of the methodology compared to the conventional ICA approach.

  • PDF

측두하악장애를 가진 성인여성에 있어 중절치부 최대교합력 유지양상 (A Feature of Maintaining the Maximum Bite Force on Central Incisors in Adult Females with Signs and Symptoms of Temporomandibular Disorders)

  • 김정민;신금백
    • Journal of Oral Medicine and Pain
    • /
    • 제12권1호
    • /
    • pp.47-52
    • /
    • 1987
  • In order to evaluate the effect of signs and symptoms of temporomandibular disorders on the bite force of anterior teeth, the author estimated a feature of maintaining the maximum bite force on central incisors in Korean 34 adult females with signs and symptoms of temporomandibular disorders (TMD group) and in Korean 31 adult females within normal masticatory function far from any sign or symptom of TMD (control group), and analyzed the data statistically. The obtained results were as follows: 1. There was not a significant difference of the maximum bite force on central incisors between TMD group and control group (P>0.05). 2. The duration of maintaining the maximum bite force on central incisors in TMD group was shorter than it in control group (P<0.01).

  • PDF

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색 (Image Retrieval using Local Color Histogram and Shape Feature)

  • 정길선;김성만;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.50-54
    • /
    • 1999
  • 본 논문에서는 영상의 다양한 특징 정보 중에서 색상 특징과 모양 특징을 이용한 영상 검색 시스템을 제안한다. 색상 특징은 지역별 색상 분포 히스토그램을 추출하고, 각 지역의 히스토그램 중에 가장 큰 값을 가지는 4개의 값을 특징 정보로 이용한다. 모양 특징을 추출하기 위한 전처리 과정은 경계면 추출과정, 경계면에 대한 무게 중심 추출 과정, angular sampling 과정으로 구성되고, 무게 중심으로부터 경계면까지의 거리의 합, 표준 편차, 장축/단축 비율을 특징 정보로 이용한다. 각 질의 영상들의 특징 정보와 데이터베이스에 저장된 영상들의 특징 정보들 비교하여 유사도 순위에 따라 후보영상들이 검색된다. 200개의 폐곡선을 이루는 상표영상에 대한 검색 실험을 통하여 색상 정보와 모양 정보에 대한 정확도를 측정하였다. 실험 결과 평균 Recall/Precision이 0.72/0.83를 보임으로써 제안된 방법이 유용함을 보였다.

  • PDF

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

A planetary lensing feature in caustic-crossing high-magnification microlensing events

  • 정선주;황규하;류윤현;이충욱
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.109.2-109.2
    • /
    • 2012
  • Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions.

  • PDF

Reversible Sub-Feature Retrieval: Toward Robust Coverless Image Steganography for Geometric Attacks Resistance

  • Liu, Qiang;Xiang, Xuyu;Qin, Jiaohua;Tan, Yun;Zhang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.1078-1099
    • /
    • 2021
  • Traditional image steganography hides secret information by embedding, which inevitably leaves modification traces and is easy to be detected by steganography analysis tools. Since coverless steganography can effectively resist steganalysis, it has become a hotspot in information hiding research recently. Most coverless image steganography (CIS) methods are based on mapping rules, which not only exposes the vulnerability to geometric attacks, but also are less secure due to the revelation of mapping rules. To address the above issues, we introduced camouflage images for steganography instead of directly sending stego-image, which further improves the security performance and information hiding ability of steganography scheme. In particular, based on the different sub-features of stego-image and potential camouflage images, we try to find a larger similarity between them so as to achieve the reversible steganography. Specifically, based on the existing CIS mapping algorithm, we first can establish the correlation between stego-image and secret information and then transmit the camouflage images, which are obtained by reversible sub-feature retrieval algorithm. The received camouflage image can be used to reverse retrieve the stego-image in a public image database. Finally, we can use the same mapping rules to restore secret information. Extensive experimental results demonstrate the better robustness and security of the proposed approach in comparison to state-of-art CIS methods, especially in the robustness of geometric attacks.

A ROLE OF SINGLETONS IN QUANTUM CENTRAL LIMIT THEOREMS

  • Accardi, Luigi;Hashimoto, Yukihiro;Obata, Nobuaki
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.675-690
    • /
    • 1998
  • A role of singletons in quantum central limit theorems is studied. A common feature of quantum central limit distributions, the singleton condition which guarantees the symmetry of the limit distributions, is revisited in the category of discrete groups and monoids. Introducing a general notion of quantum independence, the singleton independence which include the singleton condition as an extremal case, we clarify the role of singletons and investigate the mechanism of arising non-symmetric limit distributions.

  • PDF