• Title/Summary/Keyword: central composite design (CCD)

Search Result 164, Processing Time 0.028 seconds

Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures (Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발)

  • Ahn, Hyun-Jung;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.297-304
    • /
    • 2007
  • For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

Roasting Conditions for Optimization of Citri Unshii Pericarpium Antioxidant Activity Using Response Surface Methodology (반응표면분석을 이용한 진피의 항산화 활성 최적화를 위한 로스팅 조건 확립)

  • Hwang, Hyun Jung;Park, Jeong Ah;Choi, Jeong In;Kim, Hee Soo;Cho, Mi Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.261-268
    • /
    • 2016
  • This study was conducted to establish roasting conditions for optimization of Citri Unshii Pericarpium antioxidant activity using response surface methodology (RSM). A central composite design was applied to investigate the effects of two independent variables, namely roasting temperature ($40{\sim}100^{\circ}C$; $X_1$) and roasting time ($5{\sim}15min$; $X_2$), on responses such as electron donating ability ($Y_1$), total phenolic content ($Y_2$), total flavonoid content ($Y_3$), and hydroxyl radical scavenging activity ($Y_4$). The maximum electron donating ability was 72.38% at a roasting temperature of $71.12^{\circ}C$ and roasting time of 9.39 min. The maximum total phenolic content was 10.76 mg tannic acid equivalents/g at a roasting temperature of $69.71^{\circ}C$ and roasting time of 8.39 min. The maximum total flavonoid content was 105.99 mg quercetin equivalents/100 g at $72.54^{\circ}C$ and 8.64 min. The maximum hydroxyl radical scavenging activity was 60.33% at $68.97^{\circ}C$ and 9.84 min. Based on the superimposition of three dimensional RSM with respect to electron donating ability, total phenolic content, total flavonoid content, and hydroxyl radical scavenging activity under various conditions, optimum conditions were established as follows: roasting temperature of $70.90^{\circ}C$ and roasting time of 9.03 min.

Optimization of the Addition of Garlic in Cheonggukjang using Response Surface Methodology (반응표면분석을 이용한 청국장 제조시 마늘의 첨가조건 최적화)

  • Hwang, Cho-Rong;Sim, Hye-Jin;Kim, Gyeong-Min;Cho, Kye-Man;Kim, Jeong-Hwan;Shin, Jung-Hye
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.661-669
    • /
    • 2013
  • This study was performed to determine the optimal composition of Cheonggukjang added with garlic. The experiment utilized a central composite design (CCD). The evaluation was carried out by means of response surface methodology (RSM), which included 18 experimental points with three independent variables : the content of the garlic (1.3~9.7%, $X_1$), the steaming time of garlic (0~15.1 min, $X_2$), and the fermentation time of Cheonggukjang (48.2~71.8 h, $X_3$). The viscous substance ($Y_1$), acidity ($Y_2$), amino-type nitrogen ($Y_3$), ${\gamma}$-GTP activity ($Y_4$) and ABTS radical scavenging activity ($Y_5$). were assessed in four replicates with five dependent variables. The maximum content of the viscous substance was 13.02% at 6.53% ($X_1$), 6.81 min ($X_2$) and 55.18 h ($X_3$). The acidity was increased when the fermentation time was longer, and the minimum acidity point was 0.50% at 7.75% ($X_1$), 3.42 min ($X_2$) and 58.60 h ($X_3$), respectively. The content of the amino-type nitrogen at the experimental range studied was was 80.58~158.82 mg%, and the stationary point was at saddle point. Using ridge analysis, the maximum point was 156.97 mg% at 6.21% ($X_1$), 14.85 min ($X_2$) and 58.04 h($X_3$). The optimum conditions of ${\gamma}$-GTP activity was 5.73% ($X_1$), 6.99 min ($X_2$) and 57.96 h($X_3$), respectively, at the maximum point was 353.66 mU/mL. The maximum point of ABTS radical scavenging activity was 76.43% at 3.78% ($X_1$), 14.28 min ($X_2$) and 57.99 h($X_3$) at the saddle point, when the garlic steaming time was longer.

[Retraction] Characteristics and Optimization of Platycodon grandiflorum Root Concentrate Stick Products with Fermented Platycodon grandiflorum Root Extracts by Lactic Acid Bacteria ([논문 철회] 반응표면분석법을 이용한 젖산발효 도라지 추출물이 첨가된 도라지 농축액 제품의 최적화 연구)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Shin Young;Mun, Jung Sik;Kil, Mi Ja;Doh, Eun Soo;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1386-1396
    • /
    • 2017
  • The purpose of this study was to determine the optimum Platycodon grandiflorum root concentrate (PGRC, $65^{\circ}Brix$), fermented P. grandiflorum root extract by Lactobacillus plantarum (FPGRE, $2^{\circ}Brix$), and cactus Chounnyouncho extract (Cactus-E, $2^{\circ}Brix$) for preparation of PGRC stick product with FPGRE using response surface methodology (RSM). The experimental conditions were designed according to a central composite design with 20 experimental points, including three replicates for three independent variables such as amount of PGRC (8~12 g), FPGRE (0~20 g), and Cactus-E (0~20 g). The experimental data for the sensory evaluation and functional properties based on antioxidant activity and antimicrobial activity were fitted with the quadratic model, and accuracy of equations was analyzed by ANOVA. For the responses, sensory and functional properties showed significant correlation with contents of three independent variables. The results indicate that addition of PGRC contributed to increased bitterness and acridity based on the sensory test and antimicrobial activity, addition of FPGRE contributed to increased antioxidant activity and antimicrobial activity, and addition of Cactus-E contributed to increased fluidity based on the sensory test, antioxidant activity, and antimicrobial activity. Based on the results of RSM, the optimum formulation of PGRC stick product was calculated as PGRC 8.456 g, FPGRE 20.00 g, and Cactus-Ex 20.00 g with minimal bitterness and acridity, as well as optimized fluidity, antioxidant activity, and antimicrobial activity.