• 제목/요약/키워드: centering

검색결과 1,495건 처리시간 0.026초

Development of a self-centering tension-only brace for seismic protection of frame structures

  • Chi, Pei;Guo, Tong;Peng, Yang;Cao, Dafu;Dong, Jun
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.573-582
    • /
    • 2018
  • This study develops and numerically verifies an innovative seismically resilient bracing system. The proposed self-centering tension-only brace (SC-TOB) is composed of a tensioning system to provide a self-centering response, a frictional device for energy dissipation, and a high-strength steel cable as a bracing element. It is considered to be an improvement over the traditional self-centering braces in terms of lightness, high bearing capacity, load relief, and double-elongation capacity. In this paper, the mechanics of the system are first described. Governing equations deduced from the developed analytical model to predict the behavior of the system are then provided. The results from a finite element validation confirm that the SC-TOB performs as analytically predicted. Key parameters including the activation displacement and load, the self-centering parameter, and equivalent viscous damping are investigated, and their influences on the system behavior are discussed. Finally, a design procedure considering controlled softening behavior is developed and illustrated through a design example.

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

근단부 성형 크기에 따른 다양한 전동 니켈티타늄 파일의 중심 변위율 및 만곡도 감소 비교 (Comparison of the centering ratio and canal curvature reduction according to the apical preparation size using various NiTi rotary instruments)

  • 곽상원;박정길;허복;김현철
    • 대한치과의사협회지
    • /
    • 제47권7호
    • /
    • pp.435-443
    • /
    • 2009
  • The purpose of this study was to compare the centering ratio and reduction of canal curvature according to the preparation sizes of #30, #40 and #50 using three rotary NiTi instruments which have different shaft tapers. Seventy-two simulated root canals in clear resin blocks (Endo Training Bloc; Dentsply Maillefer, Ballaigues, Switzerland) were divided as following 3 groups according to the file system; the 24 canal blocks prepared with each of ProTaper Universal system (Group P), LightSpeed eXtra system (Group L), and K3 (Group K). The pre- and post-instrumented root canals were scanned and superimposed to evaluate and calculate the centering ratio and reduction of canal curvature. Mean scores of each group were statistically analyzed using one-way ANOV A and Duncan's multiple range test for post-hoc comparison. The results were as followings: 1. Group L showed better centering ratio, followed by K and P. And all experimental groups generally showed increasing tendency of centering ratio as the apical size was increasing from #30 to #50, except at 1 mm level of group P where showed reducing tendency of centering ratio. The smaller the ratio, the better the instrument remained centered in the canal. 2. Group P showed more decrease of canal curvature at all apical shaping size (p < 0.05). Under the conditions of this study, the shaft design could affect the quality of canal shaping and the smooth taperless flexible (LightSpeed) shaft design was capable of preparing canals with good morphological characteristics in curved canals.

  • PDF

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

Probabilistic seismic performance assessment of self-centering prestressed concrete frames with web friction devices

  • Song, Long L.;Guo, Tong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.109-118
    • /
    • 2017
  • A novel post-tensioned self-centering (SC) concrete beam-column connection with web friction devices has been proposed for concrete moment-resisting frames. This paper presents a probabilistic performance evaluation procedure to evaluate the performance of the self-centering concrete frame with the proposed post-tensioned beam-column connections. Two performance limit states, i.e., immediate occupancy (IO) and repairable (RE) limit states, are defined based on peak and residual story drift ratios. Statistical analyses of seismic demands revealed that the dispersion of residual drifts is larger than that of peak drifts. Due to self-centering feature of post-tensioning connections, the SC frame was found to have high probabilities to be recentered under the design basis earthquake (DBE) and maximum considered earthquake (MCE) ground motions. Seismic risk analysis was performed to determine the annual (50-year) probability of exceedance for IO and RE performance limit states, and the results revealed that the design objectives of the SC frame would be met under the proposed performance-based design approach.

센터링 홈이 팁 시험법에 미치는 영향에 대한 유한요소해석 (Finite Element Analysis of the Effect of Centering Groove on Tip Test)

  • 강성훈;임용택
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1340-1347
    • /
    • 2002
  • Finite element simulations are being widely used to increase the efficiency and effectiveness of design of bulk metal forming processes. In such simulations, proper consideration of friction condition is crucial in obtaining reliable results. For this purpose, tip test based on backward extrusion was proposed recently. In this lest, a cylindrical billet is positioned in a shallow groove of a counter punch for centering purpose and formation of a radial tip is induced on the extruded end of the workpiece. In this study, the effect of centering groove on tip test was investigated. The quantitative ratio of the shear friction factors between the punch and die was numerically determined depending on the shape of centering groove. Also, surface expansion and pressure distribution along the punch and die were considered in order to better understand the reason that friction condition at the punch compared to the one of die was more severe.

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.

수종 근관형성방법에 따른 레진모형상의 근관형태의 변화 (EFFECTS OF DIFFERENT PREPARATION METHODS ON THE MORPHOLOGIC CHANGE OF SIMULATED ROOT CANALS IN RESIN BLOCK)

  • 박미희;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.85-96
    • /
    • 1994
  • In this study, 24 curved resin blocks were prepared by one of the following four methods: 1) Conventional technique using K-flexo files 2) Step-back technique using K-flexo files 3) Crown-down technique using K-flexo files 4) Canal Master instrumentation using Canal Master Resin blocks were sectioned, photographed, and evaluated the mean centering ratio and the mean area of dentin removed before and after the instrumentation. The results were as follows : I. the mean centering ratio 1. In the level 1 and level 3, there was no significant difference in the mean centering ratio. 2. In the level 2, Step-back technique showed the worst mean centering ratio among the tested groups(p<0.001) and there was no significant difference between the other three groups. 3. In the level 4, Canal Master instrumentation and Step-back technique showed better mean centering ratio than the other two techniques(p<0.001) and there was no significant difference between the two techniques. II. the mean area of dentin removed 1. In the level l and level 3, there was no significant difference in the mean area of dentin removed. 2. In the level 2, Canal Master instrumentation removed less dentin than the other three techniques(P<0.01). 3. In the level 4, Crown-down technique removed less dentin than the other three techniques(P<0.05).

  • PDF