• Title/Summary/Keyword: centered-$Lindel{\ddot{o}}f$

Search Result 2, Processing Time 0.018 seconds

SOME REMARKS ON CENTERED-LINDELÖF SPACES

  • Song, Yan-Kui
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.277-280
    • /
    • 2009
  • In this paper, we prove the following two statements: (1) There exists a Hausdorff locally $Lindel{\ddot{o}}f$ centered-$Lindel{\ddot{o}}f$ space that is not star-$Lindel{\ddot{o}}f$. (2) There exists a $T_1$ locally compact centered-$Lindel{\ddot{o}}f$ space that is not star-$Lindel{\ddot{o}}f$. The two statements give a partial answer to Bonanzinga and Matveev [2, Question 1].

REMARKS ON CS-STARCOMPACT SPACES

  • Song, Yan-Kui
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.201-205
    • /
    • 2012
  • A space X is cs-starcompact if for every open cover $\mathcal{U}$ of X, there exists a convergent sequence S of X such that St(S, $\mathcal{U}$) = X, where $St(S,\mathcal{U})\;=\; \cup\{U{\in}\mathcal{U}:U{\cap}S{\neq}\phi\}$. In this paper, we prove the following statements: (1) There exists a Tychonoff cs-starcompact space having a regular-closed subset which is not cs-starcompact; (2) There exists a Hausdorff cs-starcompact space with arbitrary large extent; (3) Every Hausdorff centered-Lindel$\ddot{o}$f space can be embedded in a Hausdorff cs-starcompact space as a closed subspace.