• 제목/요약/키워드: center of turning circle

검색결과 17건 처리시간 0.024초

Z시험에 의한 선회권의 작도법에 관한 연구 (A Study on the Method of Turning Circle Drawing by Z-test)

  • 오정철
    • 한국항해학회지
    • /
    • 제7권1호
    • /
    • pp.33-62
    • /
    • 1983
  • A navigator on bridge needs to know every kinds of motion characteristics of his vessel at sea. Generally when a vessel is completely built, the shipyard makes turning circle diagrams from the results of turing circle tests made during the sea trials for the reference of the vessel's owner. But referring only the data of a turning circle diagram, an officer on bridge can not figure out his vessel's maneuvering characteristics sufficiently, So nowadays the shipyard often adds Z test to turning circle test for more detail references. In this paper the author made Z and turning circle tests at the rudder angles of 15 and and 35 degress separately and in each of the case made a turrning circle diagram from the results of the turning circle test and the esults numerically calculated from mathematical formula made on the base of the maneuvering indices got from the Z test and compared them each other for the purpose of finding the correlations between them. Followings are concluded from the results. An actual turning circle diagram and a calculated one from the results of the Z test at same rudder angle coincides each other well when the center of the calculated circle is transferred by 1.7B toward the direction of the initial turning perpendicularly to the original course and 0.5L toward the direction in parallel with original course in case of the rudder angle of 35 degrees and 1.2B and 0.3L toward each of the above mentioned directions in case of rudder angle of 15 degrees.

  • PDF

VTS에서 AIS데이터를 활용한 정박선의 선회중심 추정에 관한 연구 (A Study on the Estimation of Center of Turning Circle of Anchoring Vessel using Automatic Identification System Data in VTS)

  • 김광일;정중식;박계각
    • 한국항해항만학회지
    • /
    • 제37권4호
    • /
    • pp.337-343
    • /
    • 2013
  • 정박중인 선박의 안전을 위하여 항해사, 선장 및 해상교통관제사는 항상 선박이 주묘되고 있는가를 확인하여야 한다. 정박선의 주묘판별을 위하여 VTS 관제사가 선회권과 그 중심을 인지하는 것이 중요하다. VTS에서 정박선 주묘여부 감시는 레이더 및 AIS를 이용할 수 있다. 또한 이용가능하다면, CCTV 영상이나 육안에 의한 관측도 이루어 질 수 있다. 그러나 VTS 시스템은 AIS 및 ARPA Radar로부터 수집된 데이터만으로 정박선을 모니터링하고 있으므로 정박지내에서 정박선의 선회중심을 알기가 어렵다. 본 연구에서는 VTS에서 AIS에 의해 수집된 정박 선박의 선수방위각과 위치데이터를 활용하여 선회중심을 추정하는 알고리즘을 제시하고자 한다. 알고리즘의 유효성을 확인하기 위해, 실 환경에서 정박한 선박에 대한 실험연구를 수행하였다.

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

선박의 선회권 작성에 관한 고찰 (A Study on Developing Ship's Turing Circles)

  • 송강섭;허일
    • 한국항해학회지
    • /
    • 제3권1호
    • /
    • pp.1-17
    • /
    • 1979
  • It is very important for both naval architects and ship's officers to know the maneuvering characteristics of their ships. As the abilities of a rudder which controlls a ship can be determined clearly by analyzing the results of Kempf's zig-zag maneuver and directional stability of a ship also known by Dieudonn spiral maneuver, the importance of turning test which takes much time is recently apt to be neglected. But because the test can be executed comparatively more simply than any other maneuvering tests, it gives some informations on the directional stability, and turning characteristics may be expressed simply by the results of the test, it is still often performed. In this paper several assumptions are made to simplify the turning motion of a ship. The equations of initial transient phase, the radius ofsteady turning circle, and the center of the steady turning point are derived by using the hydrodynamic derivatives. And then the approximate method of drawing the turning circle geometrically is suggested.

  • PDF

Ship Manoeuvring Performance Experiments Using a Free Running Model Ship

  • Im, Nam-Kyun;Seo, Jeong-Ho
    • 한국항해항만학회지
    • /
    • 제33권9호
    • /
    • pp.603-608
    • /
    • 2009
  • In this paper, a 3m-class free running model ship will be introduced with its manoeuvring performance experiments. The results of turning circle test and zig-zag test will be explained. The developed system are equipped with GPS, main control computer, wireless LAN, IMU (Inertial Measurement Unit), self-propulsion propeller and driving rudder. Its motion can be controlled by RC (Radio Control) and wireless LAN from land based center. Automatic navigation is also available by pre-programmed algorithm. The trajectory of navigation can be acquired by GPS and it provides us with important data for ship's motion control experiments. The results of manoeuvring performance experiment have shown that the developed free running model ship can be used to verify the test of turning circle and zig-zag. For next step, other experimental researches such as ship collision avoidance system and automatic berthing can be considered in the future.

선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) -갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 - (A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) -Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck-)

  • 이윤석;김철승;이상민
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.465-471
    • /
    • 2003
  • 내항 탱커가 비교적 정온한 해역에서 타선을 피하기 위해 대각도 조타론 행한 결과, 선회 중에 전복하는 사고가 발생하였다. 저자들은 전 논문에서 비중량이 큰 액체화물의 자유표면영향에 의한 중심상승과 전진 항해 중에 발생하는 선체 침하와 이로 인하여 생기는 선체 트림의 변화 때문에 발생하는 복원력 감소를 고려하여 사고선박의 복원력 곡선을 계산하였다. 본 논문에서는 먼저 전복사고를 당한 선박의 모형선을 제작하여 자항 선회실험을 실시하고 전복선박의 정상 선회시의 선회반경, 편류각 및 선속을 계측한다. 그리고 자항 선회실험을 통하여 얻은 선회반경, 선속 및 횡 편류각을 기초로 하여 각 경사각에 따른 측 압력과 경사 모멘트에 관한 실험을 실시하고, 갑판상 해수 침입이 측 압력과 경사 모멘트에 미치는 영향에 대해서 파악한다. 마지막으로 선회시 해수 침입으로 인해 발생하는 외측 경사 모멘트와 측압 중심의 변화론 조사함으로써 전복사고가 발생한 저건현 내항 탱커의 복원성에 대하여 검토를 하였다.

선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) - 갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 - (A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) - Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck -)

  • 김철승;공길영;김순갑
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 춘계학술대회논문집
    • /
    • pp.145-153
    • /
    • 2002
  • A coastwise chemical tanker sailing at full speed has capsized in calm water and whole turing. In the precious paper, we investigated reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and the vertical distance between the center of gravity of the ship and the renter of lateral water drag.

  • PDF

GM 및 종경사 변경에 따른 선박의 조종성능변화에 관한 실험적 연구 (An Experimental Study on the Manoeuvrability of a Ship in Different GM and Trim Conditions)

  • 윤근항;김동진;여동진
    • 대한조선학회논문집
    • /
    • 제57권4호
    • /
    • pp.230-240
    • /
    • 2020
  • The aim of this study was to investigate the manoeuvrability of a ship in different Center of Gravity (CG) conditions. Free Running Model Tests (FRMT), such as 35°turning circle tests, 20/20 zigzag manoeuvring tests, and 10/10 zigzag manoeuvring tests, were conducted in three GM and three trim conditions with 1/65.83 scaled KRISO Container Ship (KCS). The test results indicated that KCS in the lower GM condition and the trim by bow condition showed reduced advance and tactical diameter in turning circle tests and increased overshoot angles in zigzag tests, and those manoeuvring indices were strongly related with roll angle. In addition, sensitivity indices for three-axis CG position were suggested with prior research, and it showed that y-axis CG position significantly affected manoeuvrability of KCS due to the low GM. Therefore, in the case of KCS, it is evident that the roll angle during manoeuvre is closely related with manoeuvring indices.

선형에 따른 전심의 이동에 관한 연구 (A Study on Shifting of Pivoting Point in accordance with Configuration of Ships)

  • 최명식
    • 한국항해학회지
    • /
    • 제10권2호
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF