• Title/Summary/Keyword: cementoblast

Search Result 14, Processing Time 0.021 seconds

THE STUDY ON PERIODONTAL REGENERATION OF REPLANTED TEETH FOLLOWING THE APPLICATION OF RH-BMP-4 (rh-BMP-4가 재식치아 치주조직의 재생에 관한 연구)

  • Lee, Se-Joon;Choi, Kyung-Ku;Park, Sang-Jin;Choi, Ho-Yong;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.170-179
    • /
    • 2000
  • The rh-BMP-4 is a subgroup of TGF-${\beta}$ superfamily. The application of rh-BMP in alveolar bony defect was reported to new alveolar bone and new cementum formation. For minimized complications following tooth replantation, a operator must replant a tooth fast at the pertinent position. This study was to evaluate the effect of rh-BMP-4 on periodontal regeneration and root resorption following tooth replantation in rats. The 50 Sprague-Dawley rats weighting about 130gm were used in this study. The animals were divided into three groups. Group 1 ; immediate replantation after extraction : Group 2 ; replantation stored teeth extraction of first molar, the removal of periodontal ligament with collagenase, and etching with citric acid : Group 3 ; replantation stored teeth with treated rh-BMP-4 in mesial root. Experimental animals were sacrificed 3, 7, 14 days after replantation by heart infusion. The maxillae were removed, fixed, demineralized, dehydrated, infiltrated and embedded with JB-4 mixture. For light microscopic observation, 5 micron sections were cut and stained with toluidine blue. The results of this study were as follows : 1. After experimental 3 days, all groups were observed dead space between periodontum and root. 2. After experimental 7 days, group 1 and group 3 were observed filling periodontal fibers between alveolar bone and root but group 2 were not. 3. After experimental 7 days, group 3 were observed appearance of attached cementoblast like cell on root surface. Group 1 were observed regular arrangement of fibroblasts and collagen fibers at ${\times}400$ observation. 4. After experimental 14 days, all group were observed filling periodontal fibers between alveolar bone and root. Group 1 were observed normal arrangement of periodontal fibers. Group 3 were observed less abnormal arrangement of periodontal fibers. Group 2 were not observed functional normal arrangement of periodontal fibers. 5. After experimental 14 days, group 2 and 3 were observed several root resorption and irregular root surface but group 1 were not. These results suggest that the rh-BMP-4 can stimulate cementogenesis and enhance to attach collagen fibers.

  • PDF

Expression of UNC-50 DNA in periodontal tissue of rats after application of intermittent orthodontic force (간헐적 교정력 적용 후 백서 치주인대에서 UNC-50 유전자의 발현)

  • Park, Mi-Kyoung;Lim, Sung-Hoon;Kim, Kwang-Won;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.242-250
    • /
    • 2006
  • Objective: Periodontal ligament fibroblasts have an ectomesenchymal origin and are thought to play a crucial role for not only homeostasis of periodontal tissues but also bone remodeling, wound healing and regeneration of tissues. Recently, it has been reported that UNC-50 is not expressed in gingival fibroblasts but in PDL fibroblasts. The purpose of this study was to examine the expression of UNC-50 and osteocalcin in the periodontium after application of intermittent force. Methods: Twelve rats had 40 grams of mesially-directed force applied at the upper molar for 1 hour/day. Four rats were sacrificed at 1, 3 and 5 days. Immunohistochemical localization of UNC-50 and osteocalcin antibody was carried out. The results showed apposition of new cellular cementum and a slight increase in periodontal space at the tension side. Results: Strong UNC-50 expression was observed in the differentiating cementoblasts close to PDL fibroblasts in the tension side whereas it was barely expressed at the compression side. Expression was strong at day 3, and decreased at day 5. Osteocalcin immunoreactivity expression was strong in differentiating cementoblasts at the tension side. Conclusion: It can be suggested that UNC-50 is related to the differentiation of cementoblasts, and may be responsible for the molecular event in PDL cells under mechanical stress.

THE EXPRESSION OF NITRIC OXIDE SYNTHETASE IN THE EXPERIMENTAL TOOTH MOVEMENT IN RATS (백서의 실험적 치아이동시 Nitric Oxide Synthetase의 발현 양상)

  • Park, Dong-Kwon;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.107-120
    • /
    • 2001
  • Nitric oxide(NO) has been reported to be one of the mediators relating to bone remodelling. Nitric oxide is synthesized from L-arguinine by nitric oxide synthetase(NOS), which is largely divided Into two groups. One group which is composed of $NOS_1\;and\;NOS_3$, is dependent of calcium or calmodulin. The other consisted of $NOS_2$, which is independent of calcium or calmodulin. NOS is thought to be a possible intermediate affecting in the course of tooth movement. This study was designed to evaluate the expression of nitrous oxide synthetase(NOS) in periodontal tissue during the experimental movement of rat incisors, by LSAB(labelled streptavidine biotin) immunohistochemical staining for $NOS_2\;and\;NOS_3$. Twenty seven Sprague-Dawley rats were divided into a control group(3 rats), and 6 experimental groups(24 rats), to which 75g of force was applied, with helical springs across the maxillary incisors. Rats of experimental groups were sacrificed at 12 hours, 1, 4, 7, 14 and 28 days after force application, respectively. After that, the tissues of the control group and experimental groups were studied immunohistochemically. The results were as follows: 1. In control group, the expression of $NOS_3$ was rare in gingiva, dentin, periodontal ligament and alveolar bone, and was mild in the capillaries of pulp and intermaxillary suture. And the expression of $NOS_2$ showed similar pattern to that of $NOS_3$. 2. There were no differences in the expression of $NOS_2\;or\;NOS_3$ in dentin, gingiva, cementum, cementoblast and odontoblast, between control and experimental groups, regardless of the duration of the force application. 3. The expression of $NOS_3$ began to increase at 4 days and showed to the highest degree at 7 days after force application, in the apical region of pressure side of periodontal ligament in experimental groups. 4. The expression of $NOS_3$ in alveolar bone was rare until 7 days, after which it increased to mild degree at 14 days through 28 days in experimental group. But there was no difference between pressure and tension side of periodontal ligament. 5. The expression of $NOS_2$ in periodontal ligament was mild from 7 days after force application, regardless of the side of periodontium, which was generally more evident than that of $NOS_3$. 6. The expression of $NOS_2$ in alveolar bone increased to mild degree at 14 days after force application, and it was evident in osteoblasts, osteoclasts and osteocytes. And the expression of $NOS_2$ was little more stronger in the tension side than that of pressure side of alveolar bone.

  • PDF

Tissue changes of pulp and periodontium on rapid tooth movement with osteotomy in dogs (골절단을 이용한 급속 치아이동 후 치수 및 치주조직 변화)

  • Kang, Kyung-Hwa;Kim, Eun-Cheol;Lee, Sun-Kyung;Lim, Chae-Woong;Matduda, Kiku;Tae, Ki-Chul;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.131-142
    • /
    • 2004
  • The movement of tooth-bone segments by osteotomy can simultaneously shift tooth and surrounding alveolar bone in a relatively short period. The purpose of this study was to evaluate the tissue changes in pulp, periodontal ligament, and alveolar bone in rapid tooth-bone movement with osteotomy. The mandibular 3rd premolar of a dog was extracted and cortical bones of the buccal and lingual area were eliminated, and then cortical bones around the mesial and distal area of root, and below the root apex of the mandibular 4th premolar were osteotomized. After a one-week latency period, a tooth-borne distraction device was activated for 6 days. And pulp, periodontal ligament and alveolar bone were evaluated clinically, radiologically, histologically and immunohistochemically at 0, 1, 2, 4, 6, 8 weeks of the consolidation Period and conclusions were roached as follows. 1. Latency period didn't affect total amount or tooth movement and healing process of tissue during consolidation period. 2. Bone formation continued through 8 weeks of consolidation in distracted side, with a high peak at 1-2 weeks, and the lowest at 6-8 weeks or consolidation. 3. At 1 week of consolidation, alveolar bone resorption, osteoclast appearance and inflammatory cell infiltration were the most active, and dentinoclasts characteristically appeared on the pulp and pressure side of the periodontal ligament. 4. The expression of $TGF-\beta$ was area-specific, as it was strong-positive at bone matrix, osteoblast osteoclast of alveolar bone, and dentinoclast inside pulp, but weak in pulp, cementoblast and acellular cementum. 5. The expression of $TGF-\beta$ was generally observed at the initial 1-2 weeks of consolidation at vessels, periodontal ligament cells, and osteoblast near alveolar bone on the distraction side of the periodontal ligament, and was significantly decreased after 6 weeks of consolidation.