• Title/Summary/Keyword: cementite

Search Result 110, Processing Time 0.023 seconds

The Characteristics of Corrosion Resistance during Plasma Oxinitrocarburising for Carbon Steel (플라즈마 산질화처리 조건이 강의 내식성에 미치는 영향)

  • Lee, K.H.;Nam, K.S.;Lee, S.R.;Cho, H.S.;Shin, P.W.;Park, Y.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.103-109
    • /
    • 2001
  • Plasma nitrocarburising and post oxidation were performed on SM45C steel using a plasma nitriding unit. Nitrocarburising was carried out with various methane gas compositions with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% oxygen gas atmosphere with 4 torr at different temperatures for various times. It was found that the compound layer produced by plasma nitrocarburising consisted of predominantly ${\varepsilon}-Fe_{2-3}(N,C)$ and a small proportion of ${\gamma}-Fe_4(N,C)$. With increasing methane content in the gas mixture, ${\varepsilon}$ phase compound layer was favoured. In addition, when the methane content was further increased, cementite was observed in the compound layer. The very thin oxide layer on top of the compound layer was obtained by post oxidation. The formation of Oxide phase was initially started from the magnetite($Fe_3O_4$) and with increasing oxidation time, the oxide phase was increased. With increasing oxidation temperature, oxide phase was increased. However the oxide layer was split from the compound layer at high temperature. Corrosion resistance was slightly influenced by oxidation times and temperatures.

  • PDF

Behavior of Reduction and Carburization of EAF Dust and Mill Scale (전기로 분진과 압연 Scale의 환원 및 탄화거동)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.50-56
    • /
    • 2003
  • To be recycled iron and heat source in EAF, EAF dust and mill scale generated from steelmaking plant should be made to iron carbide. Behavior of reduction and carburization in EAF dust and mill scale is studied to get fundamental data. EAF dust and mill scale are carburized at $650^{\circ}C$ by 100% CO gas. The carbon content of iron carbide(about 9 wt,% C) is higher than that of cementite without free carbon. The 1.2 times of calculated carbon content is suitable for reduction of EAF dust. The reduction temperature is appropriate to $900^{\circ}C$ in EAF dust and $1000^{\circ}C$ in mill scale. The carburization rate of mill scale are faster than those of EAF dust. The composition of super iron carbide is almost $Fe_2$C.

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.

Formation of Nanocrystalline Ferrite by Planetary Ball Milling in a Low Carbon Steel (저탄소강에서 Planetary 볼밀링에 의한 나노결정 페라이트의 형성)

  • Lee, Hye Jung;Lee, Sang Woo;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.29-40
    • /
    • 2005
  • Formation of nanocrystalline ferrite was investigated using milled powders obtained by planetary ball milling of chips, which were made by high speed mechanical cutting of a low carbon steel(0.15%C-1.1%Mn-0.01%Ti). After 4 hour milling the chips were changed to powders of $50{\mu}m$ in average size, and with increasing milling time the powders were refined to about $3{\mu}m$ for 128 hour and showed more equiaxed shapes. Nanocrystalline(nc) region appeared in the surfaces of powders milled for 1 hour, and the 4 hour milled powders were almost filled with nc region. Hardness of nc region was much higher than that of work-hardened(WH) region. With increasing milling time, ferrite and cementite in pearlite were severely deformed and lamellar spacing was decreased, and then cementites began to disappear after 4 hour milling due to dissolution into ferrite. Deformation bands formed in lightly work-hardened region showed large width and similar crystallographic orientations. Spacing of deformation bands was decreased with deformation and the layered microstructure consisting of narrow deformation bands subdivided into variously oriented small grains was formed by more deformation, and eventually this structure seemed to be evolved to the nc structure by further deformation. It is also conjectured the growth of nc ferrite grains occurred through the coalescence of nanocrystalline ferrites rather than the nucleation and growth of recrystallized grains.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel (열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정)

  • Oh, Do-Won;Park, Ki-Won;Lee, Jun-Boum;Lee, Sang-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

Effect of Micro-Alloying Elements and Transformation Temperature on the Correlation of Microstructure and Tensile Properties of Low-Carbon Steels with Ferrite-Pearlite Microstructure (페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.184-191
    • /
    • 2017
  • This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.

Metallurgical Analysis of Forged Iron Axe Excavated from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘에서 출토된 단조 철부의 금속학적 특성 분석)

  • Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Jeong-Hun;Yi, Ki-Wook
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-42
    • /
    • 2004
  • The forged iron axe found in the No. 2 wood-framed tomb (the middle 3rd century) of Hwangseongdong, Gyeongju is rectangular on the plane level. It shows an obtuse angle in the edge part, while the joint part has the both sides folded up and shows the traces of wood. Under the reflected light, the Iron axe shines in metal luster, which is bright light gray or light creamy colors. The result of x-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and structure of the original ore has been kept intact. The microtexture of the axe has the irregular network of ferrite and pearlite, and tile cementite of tiny amount in the ferrite background. The overall treatment of the texture seems to be thermal with a high ratio of carbon. There are fine-grained magnetite, wolframite, quartz, calcite, mica, hornblende and pyroxene inside the axe. Those must be the impurities that they failed to remove in the refining process. The normal ferrite is composed of pure iron whose $Fe_2O_3$ proportion is from 99.16 to $99.84\;wt.\%$. Other than them, the ferrite parts usually contain $Al_2O_3\;and\;SiO_2$. The irregular network of pearlite also contains Impurities including $Al_2O_3\;and\;SiO_2$ and shows highly diverse patterns of carbon content. It's because the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

  • PDF

Analysis of Eutectic Reaction as a Function of Cooling Rate in High Manganese Flake Graphite Cast Irons (고 망간 편상흑연주철에서 냉각속도별 공정반응 분석)

  • Lee, Sang-Hwan;Lee, Hyun-Woo;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.162-170
    • /
    • 2013
  • The effects of Mn content and cooling rate on the eutectic reaction of flake graphite cast irons were studied by a combined analysis of macro/micro-structure and cooling curve data. The correlation between the eutectic reaction parameter and macro/microstructure was systematically investigated. Two sets of chemical compositions with different Mn contents were designed to cast. Three types of molds for cylindrical specimens with different diameters were prepared to analyze the cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_U-T_{E,C}$), which is decreased by increasing the Mn content or increasing the cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$, and D-type graphite is mainly suggested to form for ${\Delta}T_1$ below $0^{\circ}C$. Eutectic reaction time (${\Delta}T$), which is increased by increasing the Mn content and decreased by increasing the cooling rate, is regarded as a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in proportion to the decrease of ${\Delta}T$.

Austenite Stability of Nanocrystalline FeMnNiC Alloy (나노결정 FeMnNiC합금의 오스테나이트 안정성)

  • Oh, Seung-Jin;Jeon, Junhyub;Shon, In-Jin;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.389-394
    • /
    • 2019
  • In the present study, we have investigated the effect of sintering process conditions on the stability of the austenite phase in the nanocrystalline Fe-5wt.%Mn-0.2wt.%C alloy. The stability and volume fraction of the austenite phase are the key factors that determine the mechanical properties of FeMnC alloys, because strain-induced austenite-martensite transformation occurs under the application of an external stress at room temperature. Nanocrystalline Fe-5wt.%Mn-0.2wt.%C samples are fabricated using the spark plasma sintering method. The stability of the austenite phase in the sintered samples is evaluated by X-ray diffraction analysis and hardness test. The volume fraction of austenite at room temperature increases as the sample is held for 10 min at the sintering temperature, because of carbon diffusion in austenite. Moreover, water quenching effectively prevents the formation of cementite during cooling, resulting in a higher volume fraction of austenite. Furthermore, it is found that the hardness is influenced by both the austenite carbon content and volume fraction.