• Title/Summary/Keyword: cemented sand and gravel (CSG) dam

Search Result 12, Processing Time 0.03 seconds

Strength Characteristics of Cemented Sand and Gravel (Cemented Sand and Gravel 재료의 강도특성)

  • Kim Ki-Young;Park Han-Gyu;Jeon Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.61-71
    • /
    • 2005
  • Cemented Sand and Gravel (CSG) is a material made by simple mixing of rock-based raw materials such as excavated soil and riverbed gravel together with cement and water. The use of CSG material for cofferdam and large dam is gradually increasing in Japan because a quarry and aggregate plants can be diminished. Also, the CSG method can reduce dam construction cost, construction duration and destruction of environment. In this paper, the basic strength characteristics of CSG, such as compressive strength, modulus of elasticity and stress-strain curve were investigated by unconfined compression test and large triaxial compression test. From the results of the experimental study, the correlation equations between elastic modulus and unit cement, age are proposed.

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF

Application study of C.S.G method by the test construction and field test (시험시공 및 현장시험을 통한 C.S.G 공법의 적용성 검토)

  • Kim, Ki-Young;Park, Han-Gyu;Cho, Sung-Eun;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.61-68
    • /
    • 2006
  • Cemented Sand and Gravel(CSG) is a material made by simple mixing of rock-based raw materials such as excavated soil and riverbed gravel together with cement and water. The use of CSG methodl for cofferdam and large dam is gradually increasing in Japan because a quarry and aggregate plants can be diminished. Also, the CSG method can reduce dam construction cost, construction duration and destruction of environment. In this paper, field test and test construction of CSG method was conducted on Hwabuk Dam. The mechanical properties of CSG, such as compressive strength, extention strength and field permeability test were investigated. From the results of the experimental study, application study of CSG method was discussed.

  • PDF

Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes

  • Mahmoodi, Khadije;Noorzad, Ali;Mahboubi, Ahmad
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.483-495
    • /
    • 2020
  • Dams are vital infrastructures that are expected to maintain their stability during seismic excitations. Accordingly, cemented material dams are an emerging type, which are being increasingly used around the world owing to benefiting from advantages of both earth-fill and concrete gravity dams, which should be designed safely when subjected to strong ground motion. In the present paper, the seismic performance of a cemented sand and gravel (CSG) dam is assessed using incremental dynamic analysis (IDA) method by accounting for two failure modes of tension cracking and base joint sliding considering the dam-reservoir-foundation interactions. To take the seismic uncertainties into account, the dam is analyzed under a suite of ground motion records and then, the effect of friction angle for base sliding as well as deformability of the foundation are investigated on the response of dam. To carry out the analyses, the Cindere dam in Turkey is selected as a case study, and various limit states corresponding to seismic performance levels of the dam are determined aiming to estimate the seismic fragilities. Based on the results, sliding of the Cindere dam could be serious under the maximum credible earthquake (MCE). Besides, dam faces are mostly to be cracked under such level of intensity. Moreover, the results indicate that as friction angle increases, probability of sliding between dam and foundation is reduced whereas, increases tensile cracking. Lastly, it is observed that foundation stiffening increases the probability of dam sliding but, reduces the tensile damage in the dam body.

Application of Artificial Neural Networks for Prediction of the Strength Properties of CSG Materials

  • Lim, Jeongyeul;Kim, Kiyoung;Moon, Hongduk;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • The number of researches on the mechanical properties of cemented sand and gravel (CSG) materials and the application of the CSG Dam has been increased. In order to explain the technical scheme of strength prediction model about the artificial neural network, we obtained the sample data by orthogonal test using the PVA (Polyvinyl alcohol) fiber, different amount of cementing materials and age, and established the efficient evaluation and prediction system. Combined with the analysis about the importance of influence factors, the prediction accuracy was above 95%. This provides the scientific theory for the further application of CSG, and will also be the foundation to apply the artificial neural network theory further in water conservancy project for the future.

The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber (폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

Strength Characteristics of Cemented Sand of Nak-dong River (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Youngsu;Jeong, Wooseob;Seok, Taeryong;Im, Ansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.43-52
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know strength of the cemented sand that is mixed with cement and poor-graded sand, to estimate CSG(Cemented Sand and Gravel) method used coffer dam in Japan, which is the materials of riverbed in the basin of the Nak-Dong river for levee's construction. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement content, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test and triaxial compression test as changing cement content from 2% to 8% at two sites in the basin of the Nak-Dong river.

  • PDF

Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan

  • Arefian, Amir;Noorzad, Ali;Ghaemian, Mohsen;Hosseini, Abbas
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.717-733
    • /
    • 2016
  • Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved for the second limit state. The "area of cracked elements" is more conservative criterion than the "crack length at the dam base", especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor materials in comparison with concrete dams, show good resistance, and even in some situations, better performance than the weighted concrete dams.

Strength Characteristics of CSG material (CSG 재료의 강도특성에 관한 연구)

  • Park, Han-Gyu;Kim, Ki-Young;Cho, Sung-Eun;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.619-626
    • /
    • 2005
  • This work aims at studing the stress-strain-strength behavior of an CSG(cemented sand and gravel) materials. An analysis of the mechanical behavior of the CSG is performed from the interpretation of results by unconfined compression test, large triaxial compression test in which the influence of both the degree of cementation and age. For CSG, It was concluded that the characterristics of compression are direct measurment of the degree of cementation and age. In addition, hyperbolic model is adopted to express the relation between elastic moduli and cementation, age, confined stress in small strain. The results of the test show that clear correlation with each other

  • PDF

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.