• Title/Summary/Keyword: cement treated sand

Search Result 19, Processing Time 0.02 seconds

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

Effect of acid-treatment aggregate on compressive strength of cement mortar (산 처리 골재가 시멘트 모르타르의 압축강도에 미치는 영향)

  • Shi, Yixuan;Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.151-152
    • /
    • 2019
  • This study is aimed at comparing the effect of cement mortar made of sulfuric acid treated ISO standard sand with that of cement mortar made of normal ISO standard sand. In the water absorption test, water absorption of standard sand increases with the increase of immersion time in sulfuric acid solution. The results show that at the water cement ratio of 0.5, the longer the standard sand is immersed in sulfuric acid, the greater the compressive strength of the cement mortar sample.

  • PDF

Strength and Effectiveness of Grouting of Sand Treated with Bacteria (Bacteria로 처리된 모래지반의 강도 및 주입효과)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • The purpose of this study is to confirm strength and effectiveness of grouting of the sand treated with bacteria. In order to analyze the cementation of sand treated with bacteria, five types of specimens(Not treated, Cement 2% treatment, Cement 4% treatment, Cement 2% + $CaCO_3$ 2% treatment and $CaCO_3$ 4% treatment) were made. Unconfined compressive strength tests were done on $D\;5cm{\times}H\;10cm$ specimens and biogrouting tests were performed on $D\;6cm{\times}H\;12cm$ specimens to observe the effectiveness of grouting with bacteria. As a result, Cement 2% + $CaCO_3$ 2% treatment was found to be the most effective in terms of the unconfined compressive strength.

Flexural Performance of Cement Treated Clay-Sand Mixtures Reinforced with Synthetic Fibers (합성섬유로 보강된 시멘트-점토-모래 혼합토의 휨성능 평가에 관한 연구)

  • Jung, Du-Hwoe;Cho, Baik-Soon;Lee, Yong-Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • The effects of synthetic fibers, cement content, and sand content on the flexural performance of cement-clay-sand mixtures has been evaluated through a flexural performance test with a third-point loading. Beam specimens for the flexural performance test were fabricated with a various amount of cement, sand, and synthetic fibers. Two types of fibers, PVA (Polyvinyl alcohol) and PP (Polypropylene) fibers, were employed in the test. The test results have exhibited that the factors considered in the test have significant effects on the flexural performance of the mixtures in several aspects. The flexural performance of the mixtures has been improved if the mixtures were reinforced with synthetic fibers. The flexural strength and the flexural toughness of the mixtures has been increased as the fiber content was increased. A multiple linear regression analysis has been performed to evaluate the effect of fiber content, cement dosage, and sand content on the flexural performance of the mixtures in terms of flexural strength and flexural toughness. Cement content and sand content were estimated as important factors to have an influence on the first-crack strength and the peak strength whereas the fiber content has the most significant influence on the post-crack behavior. The first-crack strength and the ultimate strength were increased as the cement content and the sand content were increased. As the fiber content was increased, the flexural toughness was increased.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing

  • Lee, Sojeong;Chang, Ilhan;Chung, Moon-Kyung;Kim, Yunyoung;Kee, Jong
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.831-847
    • /
    • 2017
  • Conventional geotechnical engineering soil binders such as ordinary cement or lime have environmental issues in terms of sustainable development. Thus, environmentally friendly materials have attracted considerable interest in modern geotechnical engineering. Microbial biopolymers are being actively developed in order to improve geotechnical engineering properties such as aggregate stability, strength, and hydraulic conductivity of various soil types. This study evaluates the geotechnical engineering shear behavior of sand treated with xanthan gum biopolymer through laboratory direct shear testing. Xanthan gum-sand mixtures with various xanthan gum content (percent to the mass of sand) and gel phases (initial, dried, and re-submerged) were considered. Xanthan gum content of 1.0% sufficiently improves the inter-particle cohesion of cohesionless sands 3.8 times and more (up to 14 times for dried state) than in the untreated (natural) condition, regardless of the xanthan gum gel condition. In general, the strength of xanthan gum-treated sand shows dependency with the rheology and phase of xanthan gum gels in inter-granular pores, which decreases in order as dried (biofilm state), initial (uniform hydrogel), and re-submerged (swollen hydrogel after drying) states. As xanthan gum hydrogels are pseudo-plastic, both inter-particle friction angle and cohesion of xanthan gum-treated sand decrease with water adsorbed swelling at large strain levels. However, for 2% xanthan gum-treated sands, the re-submerged state shows a higher strength than the initial state due to the gradual and non-uniform swelling behavior of highly concentrated biofilms.