• 제목/요약/키워드: cement replacement material

검색결과 199건 처리시간 0.023초

플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구 (A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성 (Physical Properties of Cement Using Slag as Raw Mix of Clinker)

  • 이영준;권도영;;추용식
    • 자원리싸이클링
    • /
    • 제33권3호
    • /
    • pp.12-20
    • /
    • 2024
  • 세계 시멘트 산업의 온실가스 배출량은 약 29억 톤이며, 이중 17.4~18.9억 톤이 시멘트 클링커의 주원료인 석회석으로부터 배출된다. 따라서 비탄산 CaO 원료인 슬래그류 사용이 연구되어야 하며, 이때 시멘트의 물리적 특성도 충분히 발현되어야 한다. 본 연구에서는 슬래그류 사용에 따른 혼합원료 배합 조건과 시멘트 물성을 분석하였다. 슬래그류 단독 사용 시 CaCO3 대체율은 한계를 갖으나, 혼합 슬래그 사용 시 CaCO3 대체율이 12 % 이상 증가하였다. 단독 슬래그 사용 시멘트의 압축강도는 OPC 대비 감소하였으며, 압축강도 증진을 위해 혼합원료의 LSF 및 시멘트 분말도를 상향시켰다. 분말도 상향 시멘트의 압축강도는 CaCO33 대체율 6 %까지 OPC와 유사하였으나, 9 % 이상에서는 소폭 하락하였다. 하지만 혼합 슬래그 사용 시멘트의 분말도와 LSF를 모두 상향 시, CaCO3 대체율 12 % 시멘트도 OPC와 유사한 압축강도가 발현되었다. 또한 CaCO3 대체율 12 % 시멘트의 플로우 값도 OPC와 유사하였다.

고강도 시멘트 모르타르에서 FA 및 BS의 적정조합비율 결정 (Deciding the Appropriate Combination Ratio for FA and BS in High-Intensity Cement Mortar)

  • 김민상;문병룡;조만기;박성배;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2016
  • This study analyzes the engineering characteristics of mortar according to admixture replacement ratios in cement mortar in a high-intensity ternary system, and changes in FA and BS combination ratios, in order to deduce the optimal combination ratio of FA and BS. Results showed that due to the characteristics of unhardened mortar, flow rate increased with the increase in admixture replacement and FA combination ratios, whereas air quantity decreased and setting time was delayed. Due to the characteristics of light mortar, compression strength decreased at early material ages as the overall combination ratio of FA increased. The FA : BS combination ratio was 2 : 3 on day 28 of material age, proving the best and potentially optimal combination ratio.

  • PDF

Optimizing cement replacement with rice husk ash and eggshell ash for enhanced mechanical properties of geopolymer concrete: A comparative study with and without admixture

  • Yashwanth Pamu;Venkata Sarath Pamu;Praveen Samarthi;Mahesh Kona
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.707-724
    • /
    • 2024
  • This paper proposes a study of cement replacement with rice husk ash (RHA) and eggshell ash (ESA) for enhanced mechanical properties of geopolymer (GP) concrete with and without admixture. The main objective is to investigate the mechanical properties of GP with various replacement levels of Pozzolana Portland cement by RHA and ESA. The GP resistance to durability is examined and impact of ash materials on concrete's durability performance is determined. The environmental benefits of using agricultural waste materials in GP manufacturing minimize cement usage and CO2 emissions. The goal is to assess value of RHA-ESA of building material, paving stones for structures to lessen environmental impact. The novelty lies in use of ESA and RHA as partial replacements for cement and investigation of admixtures to enhance concrete properties, and reduce environmental impact. The research contributes by introducing a novel approach to reducing cement consumption by using ESA and RHA to address environmental concerns. It also explores the potential benefits of admixtures improving concrete performance and reducing environmental pollution. A study is carried with and without impacts of admixture to find compressive strength of GP cubes. The cement has been replaced by RHA and ESA in the range of (2.5%+7.5%, 5%+5%, 7.5%+2.5) by weight of cement for M20 mix. The compressive strength (CS) and split tensile strength (STS) at 7days, 14 days and 28 days is obtained as 21 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 24 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 28 N/mm2 at 7.5%RHA+2.5%ESA and 2.8 at 7.5%ESA respectively with normal curing condition.

팽창재 종류 및 치환율에 따른 시멘트 페이스트의 레올로지 특성 (A Study on Rheological Properties of Cement Paste using Expansive Additives by Kind & Replacement Ratio)

  • 박춘영;강병희
    • 한국건축시공학회지
    • /
    • 제8권2호
    • /
    • pp.99-106
    • /
    • 2008
  • To improve concrete tensile strength and bending strength, New plan that have more economical and simple manufacture process is groped. By an alternative plan, chemical pre-stressed concrete is presented. In this study, we analyzed the rheological properties of cement paste with the kind and replacement ratio of k-type CSA type expansive additives that is used mainly in domestic. and we suggested that the algorithm of a mixing plan in the chemical pre-stressed concrete and from this, we presented the basic report for the right mixing plan. From the results, Flow increased more or less according to use of expansive additives. This phenomenon was observed by increasing paste amount that shows as substitution for expansive additives that specific gravity is smaller than that of cement. As linear regression a result supposing paste that mix expansive additives by Bingham plastic fluid. The shear rate and shear stress expressed high interrelationship. therefore, flow analysis of quantitative was available. The plastic viscosity following to replacement ratio of expansive additives is no change almost, the yield value is decreased in proportion to the added amount of expansive additives. Through this experiment, we could evaluate rheological properties of cement paste using the expansive additives. Hereafter by an additional experiment, we must confirm stability assessment of material separation by using the aggregate with the kind and replacement ratio of expansive additives.

Determination of mortar strength using stone dust as a partially replaced material for cement and sand

  • Muhit, Imrose B.;Raihan, Muhammad T.;Nuruzzaman, Md.
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.249-259
    • /
    • 2014
  • Mortar is a masonry product which is matrix of concrete. It consists of binder and fine aggregate and moreover, it is an essential associate in any reinforced structural construction. The strength of mortar is a special concern to the engineer because mortar is responsible to give protection in the outer part of the structure as well as at a brick joint in masonry wall system. The purpose of this research is to investigate the compressive strength and tensile strength of mortar, which are important mechanical properties, by replacing the cement and sand by stone dust. Moreover, to minimize the increasing demand of cement and sand, checking of appropriateness of stone dust as a construction material is necessary to ensure both solid waste minimization and recovery by exchanging stone dust with cement and sand. Stone dust passing by No. 200 sieve, is used as cement replacing material and retained by No. 100 sieve is used for sand replacement. Sand was replaced by stone dust of 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% by weight of sand while cement was replaced by stone dust of 3%, 5%, and 7% by weight of cement. Test result indicates that, compressive strength of specimen mix with 35% of sand replacing stone dust and 3% of cement replacing stone dust increases 21.33% and 22.76% respectively than the normal mortar specimen at 7 and 28 days while for tensile it increases up to 13.47%. At the end, optimum dose was selected and crack analysis as well as discussion also included.

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

석회석 혼합 시멘트로 제조된 콘크리트의 기초 물성 (Material Properties of Concrete Produced with Limestone Blended Cement)

  • 방진욱;권성준;신경준;정우정;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.125-132
    • /
    • 2015
  • 본 연구에서는 석회석 미분말을 이용하여 제조한 콘크리트의 굳지 않은 및 굳은 특성을 실험적으로 평가하였다. 석회석 시멘트 제조시 석회석 혼입률은 10%, 15%, 25% 및 35% 범위이며, 보통 포틀랜드 시멘트를 이용하여 제조한 기준 콘크리트 (OPC)와 비교하였다. 혼입률 35%까지 슬럼프, 공기량의 굳지 않은 특성은 기준 시험체와 유사한 특성을 나타내었지만 혼입률이 증가할수록 응결시간은 지연되었다. 석회석 혼입률 15%까지는 압축 및 휨강도, 급속 동결융해 저항성능의 경우 기준 OPC 콘크리트와 동등수준을 확보할 수 있는 것으로 나타났지만, 탄산화 저항성능 향상을 위한 보완은 필요한 것으로 나타났다. 혼입률 25%, 35% 배합은 기준 콘크리트 성능에 비해 압축강도 및 휨강도의 저하가 발생되었다. 치환률이 증가할수록 제한된 수산화칼슘량으로 인해 탄산화 저항성능은 모든 배합에서 감소하였다. 강도감소 및 탄산화저항성능을 고려할 경우, 15% 수준의 석회석 미분말 치환은 가능할 것으로 판단된다.

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

폐석회석의 분말도 변화에 따른 콘크리트의 특성분석 (An Analysis on Concrete Properties with the Fineness of Waste Limestone)

  • 류현기;우종권
    • 한국건축시공학회지
    • /
    • 제7권1호
    • /
    • pp.85-90
    • /
    • 2007
  • According as industry develops rapidly, problem of resources exhaustion and environmental pollution is appearing. Way to use construction waste that is development of new compound material and Industry product is required. Limestone powder that is Industry product is $CaCO_3$. and vicosity is promotion effect because there is no damage to hydration of cement and powder is very thin and water tightness increases. This research purposed to analyze concrete property changing limestone fineness. According as the limestone powdered replacement ratio increases, slump and unit capacity mass increased, and the air content decreased according as the replacement ratio increases. Compressive strength and tensile strength decreased according as the limestone powder replacement ratio increases.