• Title/Summary/Keyword: cement mortar products

Search Result 135, Processing Time 0.03 seconds

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Influence of Admixtures on Strengths and Freezing and Thawing Resistance of Cement Mortar for Precast Products (혼화재료가 공장제품용 시멘트 모르타르의 강도 및 동결융해 저항성에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.11-19
    • /
    • 2000
  • It has been reported that few manufacturers of cement mortar for precast products use chemical and mineral admixture due to the absense of restrictions related to the application of admixture and the poor manufacturing facilities. Therefore, this paper is intended to contribute to the improvement of quality by investigating the properties of cement mortar for precast products using fly ash, blast furnace slag and AE water reducing agent. According to the test results. it was found that the cement mortar products using fly ash and AE water-reducing agent had better qualities than those of ordinary portland cement.

Influences of Grading and Grade Shape in Aggregates on the Strength and Absorption of Cement Mortar Products (골재의 입도 및 입형이 제품용 시멘트 모르타르의 강도 및 흡수율에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The quality of cement mortar products largely depends on various work conditions, specially on the grading and grade shape of aggregates. However, the effect of grading and grade shape on the quality is not considered by both KS codes and production processes, resulting in the increase of the possibility of quality degradation. The objective of this study was to investigate the effect of grading and grade shape on the strength and absorption characteristics of cement mortar products. Flexural and compressive strength increased with the increase of fineness modulus and W/C. The strength increase was measured larger with river sand than with crushed sand. Absorption tended to decrease with the increase of fineness modulus and W/C, but did not affected by the source of sand.

Strength and Absorption Properties of Cement Mortar Produced with Various Content of Sludge Powder at Mines (석산에서 발생하는 슬러지 미립분의 혼입률 변화에 따른 시멘트 모르타르의 강도 및 흡수 특성)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.561-567
    • /
    • 2001
  • It is reported that a lot of sludge powder is produced during the process of manufacturing crushed fine aggregate in mines. However, there is a limitation on the its use that most of them are disposed and wasted, which cause environmental pollution. Therefore, in this paper, tests are carried out in order to recycle sludge powder as filler for cement mortar products. Kinds of aggregates and mix proportion of mortar are varied under various contents of sludge powder. According to test results, it is found that cement mortar products using sludge powder as substitution of fine aggregate about 10% have better qualities than those without sludge powder.

Strength Development of No Cement Ternary Mortar (3성분계 무시멘트 모르타르의 강도발현 특성)

  • Jung, Yu-jin;Kim, Young-su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.108-109
    • /
    • 2018
  • Cement is the most widely used but generates a lot of CO2, so we need a material to replace it. Using industrial by-products such as Silica Fume(SF), Blast furnace Slag(BS) and Fly Ash(FA) bring some advantages including CO2 reduction and resource recycling. However, there is a limit to improve performance when using only one material. Therefore, the synergy effects of No cement binary mortar and ternary mortar were analyzed and compared. As a result, No cement ternary mortar had the strength higher than binary mortar. among ternary mortars, the specimen mixed 50% of BS had the highest strength. However, when SF was mixed by 20%, the flowability reduces. so 10% of SF, 40% of FA and 50% of BS is considered as the optimal mixing ratio.

  • PDF

Development of Polymer Mortar Defensive Block for Erosion Control Works (폴리머 모르터를 이용한 사면보호재의 개발)

  • 유능환;연규석;김기성;지경용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.107-112
    • /
    • 1998
  • The objective of this study was to develop a polymer mortar defensive block with high strength and durability using unsaturated polyester resin to complement defects of conventional cement mortar defensive block. Physical and mechanical properties of the polymer mortar defensive block were also investigated. Low absorptivity, high impact strength, and great bending strength of the polymer mortar defensive block was compared with those of the conventional cement defensive block. In conclusion, the polymer mortar defensive block is excellent and useful as industrial products for erosion control works.

  • PDF

A finishing construction method for concrete floor and slab using the cement based self leveling mortar (시멘트계 SL재를 사용한 콘크리트슬래브 미장공법)

  • 손형호;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.387-392
    • /
    • 1994
  • Recently, as the problems according to lack of skilled labour and superior construction materials were gathering strength, there were required the advent of a special materials in building construction division. As a view of the point, the cement-based Self leveling mortar was developed for improvements of the former problems. The Self leveling mortar has the all kinds of the properties as followed the premixed products in plant, self-smoofhing, non shrinkgae etc, accordingly the finishing of concrete floor don't need skilled labour. The purpose of this study is to establish the introduction of a finishing construction method for concrete floor and slab using the cement-based self leveling mortar. Presented is a study on the basic properties of fresh and hardened self leveling mortar. To this end, an actual floor's finishing construction using the cement-based self leveling mortar was conducted in approximately 1,800㎡ floor as to compare the flatness and levelness after finighing.

  • PDF

50MPa Ternary Non-Cement Mortar Strength Development Mixing with Hybrid Fibers Cured by Room Temperature (상온양생에 의한 하이브리드 섬유를 혼입한 50MPa급 3성분계 무시멘트 모르타르 강도발현)

  • Cho, Sung-Won;Cho, Sung-Eun;Kim, Young-su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.179-180
    • /
    • 2020
  • CO2 emissions are caused by cement manufacturing process. To solve this problem construction industry are using industrial by-products to replace cement. In this study, three different industrial by products were used and mixed with hybrid fibers to enhance bond strength. As the result, Regardless of the mixing rate of silica fume, the compressive strength of the ternary non cent mortar was higher than that of OPC and binary. And mixed hybrid fibers cured by room temperature compressive strength were 23% higher than those without hybrid fibers.

  • PDF

Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments (황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과)

  • Kim, Dong-Hyun;Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

Effect of Fineness Modulus of Reactive Aggregate on Alkali Silica Reaction

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In this study, the effects of the fineness modulus of reactive aggregate on ASR expansion and ASR products have been investigated. The reactive aggregate used was metamorphic aggregate originated from Korea. ASR tests were conducted according to accelerated mortar bar test. The morphology and chemical composition of products formed in mortar bars, 5 years after the mortar bar test had been performed, were studied by scanning electron microscopy equipped with energy dispersive spectroscopy. Test results indicated that ASR expansion of mortar bars decrease in linear proportion to the fineness modulus of reactive aggregate. SEM images indicated that mortar bars showed reactive products formed in cement paste, within air voids and within cracks through particles except for the mortar bar with the fineness modulus of 3.25. The EDS analysis of the reactive products showed presence of silica, calcium and sodium, typical of ASR product composition.