• Title/Summary/Keyword: cement filler

Search Result 115, Processing Time 0.028 seconds

The simulation of hydration of Portland cement blended with chemical inert filler

  • Xiaoyong, Wang;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1041-1044
    • /
    • 2008
  • The addition of chemical inert filler in blended cement, such as limestone or chemical inert silica fume, will produce a physical effect on cement hydration. Due to the high surface area of inert filler in the mixtures, it provides sites for the nucleation and growth of hydration products, thus improving the hydration rate of cement compounds and consequently increasing the strength at early age. This paper proposes a model of hydration of Portland cement blended with chemical inert filler. This model considers the influence of water to cement ratio, cement particle size, cement composition and addition of chemical inert filler on hydration. The heat evolution, degree of hydration and porosity are obtained as accompanied results in hydration process. The prediction results agree well with experiment results.

  • PDF

A Study on the Properties of Electrical Conductive Cement Mortar (전지전도성 시멘트모르타르의 특성에 관한 연구)

  • Choi, Gil-Seob;Kim, Bong-Chan;Kim, Wan-Ki;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.136-141
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete ia a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry (e.g for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with graphite as filler. From the test result, as the ratio of graphite/cement increased, fluidity, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement ratio and water content of specimen. From this study, it is enough to assure the use of graphite as a conductive filler for electrical conducive cement mortar.

  • PDF

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

A Study on Bond Strength of Cement-Based Filler and Flexural Strength of RC Beam Strengthened with GFRP by Filler Thickness (시멘트계 충진제의 접착 성능 및 보강 두께에 따른 GFRP 보강 RC보의 휨 성능에 대한 연구)

  • Choi, Ha-Jin;Choi, Young-Woong;Park, Jong-Chul;Jung, Si-Young;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.144-152
    • /
    • 2010
  • In this study, cement-based filler is used as an adhesive instead of organic adhesive, epoxy because there were problems under wet condition. First, the bond strength of cement-based filler was measured and the result was satisfied with KS F 4716. However, in case of wet condition, bond strength of epoxy adhesive decreased $0.73N/mm^2$ in 7 days and $0.84N/mm^2$ in 14 days from pilot test. This implies that there would be a problem on reinforced concrete structure in wet condition, such as tunnel and sewage box. In the second experiment, the flexural strength of RC beams with GFRP using different thickness of cement-based filler was investigated, and the result was indicated 113%, 66%, 75% increase in 10mm, 20mm, 30mm thickness, respectively. From the result, it was known that 10mm filler thickness produces stable bond performance.

A Study on Hydration kinetics and Mechanical Properties of Cement Paste Incoporating Limestone Filler (석회석 미분말을 혼입한 시멘트 페이스트의 수화반응 및 역학적 특성 분석에 관한 연구)

  • Shin, Ki-Su;Bang, Mi-Jin;Park, Ki-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.230-231
    • /
    • 2017
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

  • PDF

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry (계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구)

  • Chen, YuKun;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

A Study on the Thermal Insulation Property of Concrete Composites using Light-weight Aggregate (경량골재를 사용한 콘크리트 복합체의 단열성능에 관한 연구)

  • So, Seung-Yeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.93-100
    • /
    • 2004
  • In recent years, it has widely been studied on the light-weight composites for the purpose of the large space and thermal insulation of building structures. The purpose of this study is to evaluate the properties of light-weight composites made by binders as cement, resin and polymer cement slurry. The concrete composites are prepared with various conditions such as polymer-cement ratio, void-filling ratio, type of resin, filler content and light-weight aggregate content, tested for thermal conductivity. From the test results, the thermal conductivity of concrete composites with the binder of cement tends to decrease with increasing polymer-cement ratio, and to increase with increasing void-filling ratio. The thermal conductivity of concrete composites with the binder of resin are markedly affected by the light-weight aggregate content, type of resin and filler content. The composites made by polymer-modified concrete and polymer cement slurry have a good thermal insulation property. From the this study, we can recommend the proper mix proportions for thermal insulation Panel or concrete. Expecially. the thermal conductivity of concrete composites made by polyurethane resin is almost the same as that of the conventional expanded polystyrene resin.

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF