• Title/Summary/Keyword: cement binder

Search Result 630, Processing Time 0.024 seconds

Analysis of Rheological Properties of Cement Paste with Binder Type and Composition Ratio (결합재 타입 및 구성비 변화에 따른 시멘트 페이스트의 레올로지 특성 분석)

  • Jeon, Sung IL;Nam, Jeong Hee;Lee, Moon Sup;Nho, Jae Myun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.77-88
    • /
    • 2017
  • PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS : In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS :In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.

Stabilizing Capability of Oyster Shell Binder for Soft Ground Treatment (표층/심층혼합처리용 굴패각 고화재의 고화성능 평가)

  • Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.143-149
    • /
    • 2006
  • An experimental study was carried out to investigate the stabilizing capability of oyster shell binder, which was developed using waste oyster shell inducing environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this paper is to compare stabilinzing capability of oyster shell binder and cement binder with treated soils. For this, a series of compressive laboratory tests were peformed to evaluate strength characteristics of treated soils by both oyster shell binder and cement binder with varing water content of dredged soils, different mixing rates of binder and curing days. Based on test results, eco-friendly binder manufactured by oyster shells showed more stabilizing capacity than cement binder and is estimated as good resource materials for soft soil improvements.

Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder (비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

Solidification/Stabilization of Arsenic Contaminated Soil Using Cement-Based Synthesized Materials (시멘트계 합성물질을 이용한 비소 오염 토양의 고형화/안정화)

  • Kim, Ran;YHong, Seong Hyeok;Jung, Bahng Mi;Chae, Hee Hun;Park, Joo Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • Solidification/Stabilization(S/S) is one of the remediation technologies that have been applied for treating inorganic hazardous wastes. This study investigated the reduction of arsenic concentration of arsenic-contaminated soil using by S/S. The binder plays a role in controlling the mobility and solubility of the contaminants in S/S process, so it is important to determine the optimum binder content. Therefore, this study evaluated the effectiveness of S/S using four different binders(cement, zero valent iron, and monosulfate and ettringite(cement-based synthesized materials) at the binder content ranged between 5%(wt.) and 20%(wt.). The leachability of arsenic in 1 N HCl was different depending on the types of binders: cement(71.41%) > monosulfate(47.45%) > ettringite(46.36%) > ZVI(33.08%) at the binder content of 20%. Additionally, three kinds of a mixture binder were prepared using cement and additives(monosulfate, ettringite, calcium sulfoaluminate(CSA)) and tested for arsenic reduction. The highest arsenic removal capacity was found at the mass ratio of cement to the additive, 4:1 in all experiments using a mixture binder, regardless of the additives types. A mixture binder(cement and additives) resulted in higher arsenic removal relative to the arsenic removal when cement was used alone.

Study on the Properties of Dam Concrete Using Low Heat Portland Cement (저열 포틀랜드 시멘트를 사용한 댐 콘크리트의 특성에 관한 연구)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kim, Tae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.445-448
    • /
    • 2006
  • In order to control the temperature crack of massive dam concrete, the selection of appropriate materials like binder, aggregates etc., is essential. To select the optimal mix proportion, ordinary portland cement(Type I) plus 25% of fly ash and low heat portland cement(Type IV) are used as binder, and 80mm of coarse aggregates are used to reduce the amount of binder and compare the compressive strength, hydration temperature and crack index. The results of this study are as following. 1. The strength of Type IV cement is advantageous on the long-term age. 2. According to the temperature measured on mock-up$(1.5m{\times}1.5m{\times}1.5m)$, and realized the thermal analysis, the Type IV cement carried out advantageous to control the thermal crack.

  • PDF

Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing (TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향)

  • Liu, Jun-Xing;Li, Pei-Qi;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

The Influence of the Type of Silica Fume on the Property of Cement Binder for Ultra High Strength (초고강도용 시멘트 결합재의 물성에 미치는 실리카퓸 종류의 영향)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;Kim, Sung-Su;Choi, Sung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.51-54
    • /
    • 2007
  • This study investigates the properties of paste and mortar from different types and forms of silica fume on cement binder for ultra high strength. Although most Silica Fumes distributed in the market fulfill the KS quality standard, each type showed different levels of loss of ignition. When evaluating cement binder for ultra high strength in a form of paste. Flow, viscosity and moving freely time show great difference depending on the Silica Fume's form and type of primary particle's dispersibility. The evaluation of Silica Fume's dispersibility can be possible with the paste test since there is a high correlation of flow quality between paste and mortar. The compressive strength when using Silica Fume was correlated to the SiO2 content. Synthetically, selecting Silica Fume with the most the ideal primary particle is the key to optimizing the formation for cement binder for ultra high strength.

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.