• Title/Summary/Keyword: cellulose-degradation

Search Result 227, Processing Time 0.031 seconds

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

Physiological and Biochemical Characterization of Bacillus spp. from Polychaete, Perinereis aibuhitensis (갯지렁이(Perinereis aibuhitensis)에서 분리한 Bacillus spp.의 생리생화학적 특성 분석)

  • Shin, Seyeon;Yundendorj, Khorloo;Lee, Sang-Suk;Kang, Kyoung-Ho;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.415-425
    • /
    • 2013
  • This study compared the characteristics of five Bacillus strains capable of aerobic and anaerobic growth, CBW3, CBW4, CBW9, CBW14 and EBW10. They were isolated and selected from a polychaete, Perinereis aibuhitensis, which is known as a good degrader of organic compounds in marine wetland. Based on a 16S rRNA sequence, CBW3 and CBW14 were found to share more than 99.8% similarity with B. nanhaiensis, B. arsenicus and B. barbaricus. CBW4, CBW9 and EBW10 shared 92.7%, 99.8%, and 99.8% similarity with B. anthracis, B. algicoa and B. thuringiensis, respectively. The temperature, salinity, and pH ranges of the cell growth of the Bacillus strains were $4-45^{\circ}C$, 0-17%, and pH 5-pH 9, respectively. All Bacillus strains were found to exhibit enzyme activities for the degradation of casein and starch. Notably, strain EBW10 exhibited the enzyme activities for all the tested macromolecules, DNA, casein, starch, cellulose, and four kinds of Tweens, which suggests the possibility that it had protease, amylase, cellulose, and lipase. All five Bacillus strains had alkaline phosphatase activities, and the strains CBW3, CBW4, and EBW10 also had acid phospatase. Strains CBW3 and EBW10 exhibited the enzyme activities both for esterase (C4) and esterase lipase (C8). The analysis of fatty acids revealed that in all strains, major fatty acids were anteiso $C_{15:0}$ and iso $C_{15:0}$.

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.

The effect of environmental condition to the mycelial browning of Lentinula edodes (Berkeley) Sing. during sawdust bag cultivation (환경조건이 표고톱밥배지의 갈변에 미치는 영향)

  • Kim, Young-Ho;Jhune, Chang-Sung;Park, Soo-Chul;You, Chang-Hyun;Sung, Jae-Mo;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2009
  • Recently sawdust cultivation of Shiitake mushroom (Lentinula edodes ) is getting increased because log cultivation is getting difficult to get oak logs. It is important to make mycelia browning on the substrate surface in sawdust cultivation. This browned surface plays an important role like as artificial bark of the oak log, which protects the other pests and suppresses water evaporation in the substrate. The period for mycelia browning is so long that the sawdust cultivation of Shiitake mushroom can not spread well into the mushroom farms. In this article we would like to discuss about the effect of environmental condition to the mycelial browning during sawdust bag cultivation for the To reduce the period required for browning of substrates, sawdust substrates was illuminated light with difference intensity. One hundred Lux light illumination was needed for producing normal yield of fruit body but fruit body yield was low and abnormally shaped fruit body was produced when cultured under the dark condition of incubation. Illumination over 200lux is necessary for the successful browning of substrates during incubation. Optimum incubation temperature for browning of substrates and fruiting was $25^{\circ}C$. The treatment of cotton plug with different size to identify the effect of aeration on the browning of substrates and fruiting showed rapid mycelial growth and reduced the periods for browning as the size of cotton plug was bigger. However, yield of fruit body was the highest at 16mm diameter cotton plug as compared to 20mm of that. $CO_2$ content in vessel of substrates was low as the size of cotton plug was bigger during incubation. $CO_2$ content during incubation of substrate was highest in periods between 8 week and 14 week after inoculation of shiitake when substrate was changed color into brown. $C_2H_4$ content in vessel with substrates was highest at 8mm diameter cotton plug and it was increased by order of 12, 16, 20, 0, 4 mm diameter cotton plug during substrate incubation. Sawdust substrate was soaked in cold water for different time to identify soaking effect of sawdust substrate on fruit body yield and activities of enzymes in these substrates were investigated. The fruit body yield was increased up to 40% by soaking substrates in comparison with unsoaked substrates. The soaked substrates showed 165, 175g/1,000ml at treatment of 4 and 15 hours, respectively. Cellulose activities in soaked substrates were not changed with soaking time, but activities of laccase, lignin degradation enzyme, were drastically increased up to 4 times in comparison with unsoaked substrates.

  • PDF

Optimization of Solid State Fermentation of Mustard (Brassica campestris) Straw for Production of Animal Feed by White Rot Fungi (Ganoderma lucidum)

  • Misra, A.K.;Mishra, A.S.;Tripathi, M.K.;Prasad, R.;Vaithiyanathan, S.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.208-213
    • /
    • 2007
  • The objective of the experiment was to determine the optimum cultural [moisture levels (55, 60 and 70%), days of fermentation (7, 14 and 21), temperature (25 and $35^{\circ}C$) of incubation)] and nutritional parameters (urea addition (0 and 2%) and variable levels of single super phosphate (0.25 and 0.50% SSP)) for bio-processing of the mustard (Brassica campestris) straw (MS) under solid-state fermentation (SSF) system. The performance of SSF was assessed in terms of favorable changes in cell wall constituents, protein content and in vitro DM digestibility of the MS. Sorghum based inoculum (seed culture) of Ganoderma lucidum to treat the MS was prepared. The 50 g DM of MS taken in autoclavable polypropylene bags was mixed with a pre-calculated amount of water and the particular nutrient in the straw to attained the desired levels of water and nutrient concentration in the substrate. A significant progressive increase in biodegradation of DM (p<0.001), NDF (p<0.01) and ADF (p<0.05) was observed with increasing levels of moisture. Among the cell wall constituents the loss of ADF fraction was greatest compared to that of NDF. The loss of DM increased progressively as the fermentation proceeded and maximum DM losses occurred at 28 days after incubation. The protein content of the treated MS samples increased linearly up to the day $21^{th}$ of the incubation and thereafter declined at day $28^{th}$, whereas the improvement in in vitro DM digestibility were apparent only up to the day $14^{th}$ of the incubation under SSF and there after it declined. The acid detergent lignin (ADL) degradation was slower during the first 7 days of SSF and thereafter increased progressively and maximum ADL losses were observed at the day $28^{th}$ of the SSF. The biodegradation of DM and ADL was not affected by the variation in incubation temperature. Addition of urea was found to have inhibitory effect on fungal growth. The effect of both the levels (0.25 and 0.50) of SSP addition in the substrate, on DM, NDF, ADF, cellulose and ADL biodegradation was similar. Similarly, the protein content and the in vitro DM digestibility remain unaffected affected due to variable levels of the SSP inclusion in the substrate. From the results it may be concluded that the incubation of MS with 60 percent moisture for 21 days at $35^{\circ}C$ with 0.25 percent SSP was most suitable for MS treatment with Ganoderma lucidum. Maximum delignification, enrichment in the protein content and improvement in in vitro DM digestibility were achieved by adopting this protocol of bioprocessing of MS.

Evaluation of Primary Thermal Degradation Feature of M. sacchariflorus After Removing Inorganic Compounds Using Distilled Water (증류수를 이용한 거대억새 내 무기성분 제거 효과 및 열분해 특성 변화 관찰)

  • Kim, Jae-Young;Oh, Shinyoung;Hwang, Hyewon;Moon, Yoonho;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.276-286
    • /
    • 2013
  • The goal of this study was to investigate change of thermal decomposition feature of miscanthus (Miscanthus sacchariflorus) after removal of inorganic constituents using distilled water (D.I-w; 30, 60 and $90^{\circ}C$). The carbon content was increased whereas the oxygen content was decreased with the temperature of D.I-w treatment. Moreover, ash content was slightly decreased from 4.6% of control to 3.2% of $90^{\circ}C$ D.I-w treated sample. Results of total monomeric sugar contents and X-ray diffraction (XRD) analysis showed that structural changes of cellulose/hemicellulose regions did not occurr during D.I-w treatment. Results of inductively coupled plasma emission spectrometer (ICP-ES) showed that miscanthus has the largest amount of inorganic constituents such as potassium (5,644 ppm), phosphorus (3,995 ppm), magnesium (1,403 ppm) and calcium (711 ppm). Thermogravimetric analysis (TGA) confirmed that the yield of char slightly decreased whereas the yield of volatiles increased with increasing D.I-w treatment temperature. In addition, differential thermogravimetric analysis (DTGA) indicated that the maximum decomposition rate ($V_M$) and temperature ($T_M$) corresponding to VM were varied from $0.82%/^{\circ}C$, $360.60^{\circ}C$ of control to $1.17%/^{\circ}C$, $362.62^{\circ}C$ of $90^{\circ}C$-D.I-w treated sample.

Softening Related Changes in Cell Wall Polysaccharides of Persimmon (감의 연화와 관련된 세포벽다당류의 변화)

  • Kim, Soon-Dong;Park, Nam-Sook;Kang, Meung-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.158-162
    • /
    • 1986
  • Various cell wall polysaccharides such as ionically associated pectin (IAP), covalently bounded pectin (CBP),4N potassium hydroxide soluble hemicellulosic fraction (HF,) and 0-3N soluble hemicellulosic fraction (HF,) were fractionated from crude cell wall of the fresh and soft persimmon by chemical method. The changesin cell wall polysaccharides were studied by gel filteration chromatography . The content of crude cell wall remarkably decreased in the soft persimmon. The decreasing rates of IAP, CBP and $HF_2$ were 59, 60 and 74%, respectively, while $HF_1$ and cellulose changed only a little during softening. Sugar compositions of IAP and CBP were 72-84% uronic acid, 5-1% hexose and 11-16% pentose, and also the hemicellulose was composed of uronic acid besides hexose and pentose that was hemicellulosic components. The loss rate of pentose in IAP, of hexose in CBP, of hexose and uronic acid in $HF_2$, of pentose in $HF_1$ increased during softening. Though apparent average molecular freight of all polysaccharides shifted from high molecular freight to low molecular weight polymer, the shifting degree of CBP and $HF_2$ was especially remarkable during softening. It is suggested that the severe softening phenomenon of persimmon involved the degradation and dissolution of wall bound-CBP and $HF_2$ which were associated with each other.

  • PDF

Biochemical Methane Potential of Agricultural Residues and Influence of Ensiling on Methane Production (시설농업부산물의 잠재메탄발생량 평가 및 사일로 저장에 따른 메탄 발생 변화)

  • Lee, Yu Jin;Cho, Han Sang;Kim, Jae Young;Kang, Jungu;Rhee, Sungsu;Kim, Kyuyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.765-771
    • /
    • 2012
  • In this study, the biochemical methane potentials of different agricultural residues produced from agricultural plastic greenhouse were determined. Additionally, ensiling storage practice was applied on agricultural residues for its effect on biogas production. Agricultural residues of cabbage, strawberry, tomato, cucumber, and oriental melon were selected as sample. The methane potential and biodegradability of agricultural residues ranged from 149~286 mL-$CH_4/g$-VS, 27~48% (by vol.), respectively and methane production was in order of cabbage > oriental melon > strawberry ${\approx}$ cucumber > tomato. Ensiling caused difference in methane production in a range of -11~36% (by vol.) per VS compared with raw material. An increase in methane potential was presumably linked to the organic acid accumulation, cellulose degradation and decrease in methane potential was due to chemical composition change, ammonia accumulation during the storage process.

Immobilization of Cellulases from Fomitopsis pinicola and Their Changes of Enzymatic Characteristics (흡착법에 의한 Fomitopsis pinicola 유래 cellulase의 고정화와 그에 따른 효소특성 변화)

  • Shin, Keum;Kim, Tae-Jong;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • Cellulase from Formiptosis pinicola KMJ812 is an efficient cellulose degradation enzyme complex, especially with a high ${\beta}$-glucosidase activity. In this study, the change in enzymatic characteristics by immobilization and the reduction of immobilized enzyme activity by repeated usages were evaluated using cellulases from F. pinicola KMJ812. Among tested four resins, Duolite A568 resin had the best enzyme activity yield with 61.7% cellulase activity and 64.4% ${\beta}$- glucosidase activity during the cellulase immobilization. The best reaction temperature was $55^{\circ}C$ for both cellulase and ${\beta}$-glucosidase activities which were higher than the unimmobilized soluble cellulases. The best reaction pH was 4.0 for cellulase activity which was a little more basic than a soluble form and 4.5 for ${\beta}$-glucosidase activity. The immobilized cellulase activity was remained 98% of the beginning activity after 72 h incubation at $50^{\circ}C$ and 50% of the beginning activity after eight times usage at $50^{\circ}C$.

Development of a Carbohydrate-based Fat Replacement for Use in Bread Making (제빵용 지방 대체제 개발)

  • Yoon, Seong-Jun;Jo, Nam-Ji;Jeong, Yoon-Hwa
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1032-1038
    • /
    • 2008
  • This study was conducted to develope carbohydrate-based fat replacement for use in the preparation of non-(trans) fatty acid and low-caloric bread. Characteristics such as leavening height of batter, pH, titratable acidity, specific volume, sensory evaluation, shelf life and texture change of bread made using 11 types of carbohydrate-based fat replacements were measured. The 11 carbohydrate-based fat replacers (No. $1{\sim}11$) were prepared using maltodextrin as a base, and different ratios of calcium sulfate, ascorbic acid, sodium stearoyl lactylate and methyl cellulose. The pH was lowered and the total titratable acidity was increased after four hours of fermentation in the control and the samples of dough that contained the fat replacement. In addition, the leavening height of the control was 5.0cm (maximum) after two hours of fermentation and 4.6 cm after four hours of fermentation, which was similar to the heights observed when No.$9{\sim}11$ were evaluated. When the specific volume of the bread was evaluated, the 3% of fat replacement No. 10 produced the best results. When taste was evaluated, there was no significant difference between the control and the bread produced using 1% No. 10, however, there was a significant difference between the control and all samples that contained 2% or more of the fat replacement. Furthermore, the addition of a greater concentration of the fat replacer resulted in a greater moisture. However, there were no significant differences in the color of the control and any of the samples. Additionally, measurement of the firmness of the bread during four days of storage at $25^{\circ}C$ revealed that it decreased as the concentration of fat replacer increased. In addition, the sample that contained 3% of sample No. 10 showed a firmness of 18kgf after three days of storage, while the control showed a firmness of 18kg after two days, which indicates that the degradation of the bread that contained the fat replacer was delayed by one day. The bread made using fat replacers was found to have a better taste, flavor, color, texture and firmness than the control, and the best results were observed in response to the addition of 3% of replacement No. 10. The results of this study will be useful in the production of non-(trans) fatty acid, low caloric bread.

  • PDF